35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Characterization of FLT3 Receptor Signaling Deregulation in Acute Myeloid Leukemia by Single Cell Network Profiling (SCNP)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.

          Methodology/Principal Findings

          Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.

          Conclusions/Significance

          These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Causal protein-signaling networks derived from multiparameter single-cell data.

            Machine learning was applied for the automated derivation of causal influences in cellular signaling networks. This derivation relied on the simultaneous measurement of multiple phosphorylated protein and phospholipid components in thousands of individual primary human immune system cells. Perturbing these cells with molecular interventions drove the ordering of connections between pathway components, wherein Bayesian network computational methods automatically elucidated most of the traditionally reported signaling relationships and predicted novel interpathway network causalities, which we verified experimentally. Reconstruction of network models from physiologically relevant primary single cells might be applied to understanding native-state tissue signaling biology, complex drug actions, and dysfunctional signaling in diseased cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia.

              Mutations occur in several genes in cytogenetically normal acute myeloid leukemia (AML) cells: the nucleophosmin gene (NPM1), the fms-related tyrosine kinase 3 gene (FLT3), the CCAAT/enhancer binding protein alpha gene (CEPBA), the myeloid-lymphoid or mixed-lineage leukemia gene (MLL), and the neuroblastoma RAS viral oncogene homolog (NRAS). We evaluated the associations of these mutations with clinical outcomes in patients. We compared the mutational status of the NPM1, FLT3, CEBPA, MLL, and NRAS genes in leukemia cells with the clinical outcome in 872 adults younger than 60 years of age with cytogenetically normal AML. Patients had been entered into one of four trials of therapy for AML. In each study, patients with an HLA-matched related donor were assigned to undergo stem-cell transplantation. A total of 53% of patients had NPM1 mutations, 31% had FLT3 internal tandem duplications (ITDs), 11% had FLT3 tyrosine kinase-domain mutations, 13% had CEBPA mutations, 7% had MLL partial tandem duplications (PTDs), and 13% had NRAS mutations. The overall complete-remission rate was 77%. The genotype of mutant NPM1 without FLT3-ITD, the mutant CEBPA genotype, and younger age were each significantly associated with complete remission. Of the 663 patients who received postremission therapy, 150 underwent hematopoietic stem-cell transplantation from an HLA-matched related donor. Significant associations were found between the risk of relapse or the risk of death during complete remission and the leukemia genotype of mutant NPM1 without FLT3-ITD (hazard ratio, 0.44; 95% confidence interval [CI], 0.32 to 0.61), the mutant CEBPA genotype (hazard ratio, 0.48; 95% CI, 0.30 to 0.75), and the MLL-PTD genotype (hazard ratio, 1.56; 95% CI, 1.00 to 2.43), as well as receipt of a transplant from an HLA-matched related donor (hazard ratio, 0.60; 95% CI, 0.44 to 0.82). The benefit of the transplant was limited to the subgroup of patients with the prognostically adverse genotype FLT3-ITD or the genotype consisting of wild-type NPM1 and CEBPA without FLT3-ITD. Genotypes defined by the mutational status of NPM1, FLT3, CEBPA, and MLL are associated with the outcome of treatment for patients with cytogenetically normal AML. Copyright 2008 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                27 October 2010
                : 5
                : 10
                : e13543
                Affiliations
                [1 ]Nodality, Inc., South San Francisco, California, United States of America
                [2 ]Department of Medical Oncology/Hematology, The University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
                [3 ]Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
                University of Hong Kong, China
                Author notes

                Conceived and designed the experiments: DBR AC UG SP JW WJF AC. Performed the experiments: DBR JW. Analyzed the data: DBR AC UG SP EE WJF AC. Contributed reagents/materials/analysis tools: MM SMK. Wrote the paper: DBR MM SMK AC UG SP JW EE WJF AC.

                [¤]

                Current address: Department of Microbiology and Immunology, Stanford University, Palo Alto, California, United States of America

                Article
                10-PONE-RA-18751R1
                10.1371/journal.pone.0013543
                2965086
                21048955
                940195e5-b8a0-403b-a5f5-2e2edb2d9c61
                Rosen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 May 2010
                : 19 September 2010
                Page count
                Pages: 18
                Categories
                Research Article
                Biotechnology
                Oncology
                Genetics and Genomics/Gene Function
                Hematology/Acute Myeloid Leukemia
                Hematology/Myeloproliferative Disorders, including Chronic Myeloid Leukemia
                Oncology/Hematological Malignancies
                Oncology/Myeloproliferative Disorders, including Chronic Myeloid Leukemia
                Oncology/Oncology Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article