17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Expression of Soluble and Active Recombinant Haemophilus influenzae IgA1 Protease in E. coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunoglobulin A1 (IgA1) proteases from Haemophilus influenzae are extracellular proteases that specifically cleave the hinge region of human IgA1, the predominant class of immunoglobulin present on mucosal membranes. The IgA1 proteases may have the potential to cleave IgA1 complexes in the kidney and be a therapeutic agent for IgA1 nephropathy (IgAN), a disease characterized by deposition of the IgA1 antibody in the glomerulus. We have screened for the expression of recombinant H. influenzae IgA1 protease by combining various expression plasmids, IgA1 protease constructs, and E. coli strains under multiple conditions. Using the method we have developed, approximately 20–40 mg/L of soluble and active H. influenzae IgA1 protease can be produced from E. coli strain C41(DE3), a significant increase in yield compared to the yield upon expression in H. influenzae or other related bacteria.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease.

          Several human bacterial pathogens, including the Gram-negative diplococcus Neisseria gonorrhoeae, produce extracellular proteases that are specific for human immunoglobulin IgA1. Immunoglobulin A (IgA) proteases have been studied extensively and the genes of some species cloned in Escherichia coli, but their role in pathogenesis remains unclear. Recently we derived a DNA fragment of 5 kilobases (kb) from N. gonorrhoeae MS11 directing extracellular active enzyme in E. coli. Although the mature enzyme of strain MS11 was shown to have a relative molecular mass of 106,000 (Mr 106K) in gels, the DNA sequence of this cloned fragment reveals a single gene coding for a 169K precursor of IgA protease. The precursor contains three functional domains, the amino-terminal leader which is assumed to initiate the inner membrane transport of the precursor, the protease, and a carboxyl-terminal 'helper' domain apparently required for extracellular secretion (excretion). Based on the structural features of the precursor, we propose a model in which the helper serves as a pore for excretion of the protease domain through the outer membrane. IgA protease acquires an active conformation as its extracellular transport proceeds and is released as a proform from the membrane-bound helper by autoproteolysis. The soluble proform further matures into the 106 K IgA protease and a small stable alpha-protein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence.

            IgA1 protease activity, which allows bacteria to cleave human IgA1 in the hinge region, represents a striking example of convergent evolution of a specific property in bacteria. Although it has been known since 1979 that IgA1 protease is produced by the three leading causes of bacterial meningitis in addition to important urogenital pathogens and some members of the oropharyngeal flora, the exact role of this enzyme in bacterial pathogenesis is still incompletely understood owing to lack of a satisfactory animal model. Cleavage of IgA1 by these post-proline endopeptidases efficiently separates the monomeric antigen-binding fragments from the secondary effector functions of the IgA1 antibody molecule. Several in vivo and in vitro observations indicate that the enzymes are important for the ability of bacteria to colonize mucosal membranes in the presence of S-IgA antibodies. Furthermore, the extensive cleavage of IgA sometimes observed in vivo, suggests that IgA1 protease activity results in a local functional IgA deficiency that may facilitate colonization of other microorganisms and the penetration of potential allergens. It has been hypothesized that IgA1 protease activity of Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae, under special immunological circumstances, allows these bacteria to take advantage of specific IgA1 antibodies in a strategy to evade other immune factors of the human body. The decisive factor is the balance between IgA antibodies against surface antigens of the respective bacteria and their IgA1 protease. Recent studies have shown that serine-type IgA1 proteases of H. influenzae, meningococci, and gonococci belong to a family of proteins used by a diverse group of Gram-negative bacteria for colonization and invasion.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The IgA1 proteases of pathogenic bacteria.

                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2010
                30 November 2010
                : 2010
                : 253983
                Affiliations
                Department of Cellular and Molecular Biology, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
                Author notes
                *Shinong Long: slong@ 123456bmrn.com

                Academic Editor: Lori Snyder

                Article
                10.1155/2010/253983
                2995913
                21151648
                9404751f-c682-4bfe-9847-b219e5a9f86a
                Copyright © 2010 Shinong Long et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 August 2010
                : 4 October 2010
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article