13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cellular prion protein (PrPC) in the development of Merlin-deficient tumours

      , , , , , , , , ,
      Oncogene
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO.

          We report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7 commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive-nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation.

            E-cadherin controls a wide array of cellular behaviors, including cell-cell adhesion, differentiation, and tissue development. We show here that E-cadherin is cleaved specifically by ADAM (a disintegrin and metalloprotease) 10 in its ectodomain. Analysis of ADAM10-deficient fibroblasts, inhibitor studies, and RNA interference-mediated down-regulation of ADAM10 demonstrated that ADAM10 is responsible not only for the constitutive shedding but also for the regulated shedding of this adhesion molecule in fibroblasts and keratinocytes. ADAM10-mediated E-cadherin shedding affects epithelial cell-cell adhesion as well as cell migration. Furthermore, the shedding of E-cadherin by ADAM10 modulates the beta-catenin subcellular localization and downstream signaling. ADAM10 overexpression in epithelial cells increased the expression of the beta-catenin downstream gene cyclin D1 dose-dependently and enhanced cell proliferation. In ADAM10-deficient mouse embryos, the C-terminal E-cadherin fragment is not generated, and the full-length protein accumulates, highlighting the in vivo relevance for ADAM10 in E-cadherin shedding. Our data strongly suggest that this protease constitutes a major regulatory element for the multiple functions of E-cadherin under physiological as well as pathological conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Axonal prion protein is required for peripheral myelin maintenance.

              The integrity of peripheral nerves relies on communication between axons and Schwann cells. The axonal signals that ensure myelin maintenance are distinct from those that direct myelination and are largely unknown. Here we show that ablation of the prion protein PrP(C) triggers a chronic demyelinating polyneuropathy (CDP) in four independently targeted mouse strains. Ablation of the neighboring Prnd locus, or inbreeding to four distinct mouse strains, did not modulate the CDP. CDP was triggered by depletion of PrP(C) specifically in neurons, but not in Schwann cells, and was suppressed by PrP(C) expression restricted to neurons but not to Schwann cells. CDP was prevented by PrP(C) variants that undergo proteolytic amino-proximal cleavage, but not by variants that are nonpermissive for cleavage, including secreted PrP(C) lacking its glycolipid membrane anchor. These results indicate that neuronal expression and regulated proteolysis of PrP(C) are essential for myelin maintenance.
                Bookmark

                Author and article information

                Journal
                Oncogene
                Oncogene
                Springer Nature
                0950-9232
                1476-5594
                July 10 2017
                July 10 2017
                :
                :
                Article
                10.1038/onc.2017.200
                28692055
                940969fe-ad5b-4556-8189-a40f5bc23858
                © 2017
                History

                Comments

                Comment on this article