164
views
0
recommends
+1 Recommend
0 collections
    14
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kidney function depends on the nephron, which comprises a blood filter, a tubule that is subdivided into functionally distinct segments, and a collecting duct. How these regions arise during development is poorly understood. The zebrafish pronephros consists of two linear nephrons that develop from the intermediate mesoderm along the length of the trunk. Here we show that, contrary to current dogma, these nephrons possess multiple proximal and distal tubule domains that resemble the organization of the mammalian nephron. We examined whether pronephric segmentation is mediated by retinoic acid (RA) and the caudal ( cdx) transcription factors, which are known regulators of segmental identity during development. Inhibition of RA signaling resulted in a loss of the proximal segments and an expansion of the distal segments, while exogenous RA treatment induced proximal segment fates at the expense of distal fates. Loss of cdx function caused abrogation of distal segments, a posterior shift in the position of the pronephros, and alterations in the expression boundaries of raldh2 and cyp26a1, which encode enzymes that synthesize and degrade RA, respectively. These results suggest that the cdx genes act to localize the activity of RA along the axis, thereby determining where the pronephros forms. Consistent with this, the pronephric-positioning defect and the loss of distal tubule fate were rescued in embryos doubly-deficient for cdx and RA. These findings reveal a novel link between the RA and cdx pathways and provide a model for how pronephric nephrons are segmented and positioned along the embryonic axis.

          Author Summary

          In the kidney, structures known as nephrons are responsible for collecting metabolic waste. Nephrons are composed of a blood filter (glomerulus) followed by a series of specialized tubule regions, or segments, which recover solutes such as salts, and finally terminate with a collecting duct. The genetic mechanisms that establish nephron segmentation in mammals have been a challenge to study because of the kidney's complex organogenesis. The zebrafish embryonic kidney (pronephros) contains two nephrons, previously thought to consist of a glomerulus, short tubule, and long stretch of duct. In this study, we have redefined the anatomy of the zebrafish pronephros and shown that the duct is actually subdivided into distinct tubule segments that are analogous to the proximal and distal segments found in mammalian nephrons. Next, we used the zebrafish pronephros to investigate how nephron segmentation occurs. We found that retinoic acid (RA) induces proximal pronephros segments and represses distal segment fates. Further, we found that the caudal ( cdx) transcription factors direct the anteroposterior location of pronephric progenitors by regulating the site of RA production. Taken together, these results reveal that a cdx-RA pathway plays a key role in both establishing where the pronephros forms along the embryonic axis as well as its segmentation pattern.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Retinoids in embryonal development.

          The key role of vitamin A in embryonal development is reviewed. Special emphasis is given to the physiological action of retinoids, as evident from the retinoid ligand knockout models. Retinoid metabolism in embryonic tissues and teratogenic consequences of retinoid administration at high doses are presented. Physiological and pharmacological actions of retinoids are outlined and explained on the basis of their interactions as ligands of the nuclear retinoid receptors. Immediate target genes and the retinoid response elements of their promoters are summarized. The fundamental role of homeobox genes in embryonal development and the actions of retinoids on their expression are discussed. The similarity of the effects of retinoid ligand knockouts to effects of compound retinoid receptor knockouts on embryogenesis is presented. Although much remains to be clarified, the emerging landscape offers exciting views for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developmental regulation of the Hox genes during axial morphogenesis in the mouse.

            The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cellular basis of kidney development.

              Mammalian kidney development has helped elucidate the general concepts of mesenchymal-epithelial interactions, inductive signaling, epithelial cell polarization, and branching morphogenesis. Through the use of genetically engineered mouse models, the manipulation of Xenopus and chick embryos, and the identification of human renal disease genes, the molecular bases for many of the early events in the developing kidney are becoming increasingly clear. Early patterning of the kidney region depends on interactions between Pax/Eya/Six genes, with essential roles for lim1 and Odd1. Ureteric bud outgrowth and branching morphogenesis are controlled by the Ret/Gdnf pathway, which is subject to positive and negative regulation by a variety of factors. A clear role for Wnt proteins in induction of the kidney mesenchyme is now well established and complements the classic literature nicely. Patterning along the proximal distal axis as the nephron develops is now being investigated and must involve aspects of Notch signaling. The development of a glomerulus requires interactions between epithelial cells and infiltrating endothelial cells to generate a unique basement membrane. The integrity of the glomerular filter depends in large part on the proteins of the nephrin complex, localized to the slit diaphragm. Despite the kidney's architectural complexity, with the advent of genomics and expression arrays, it is becoming one of the best-characterized organ systems in developmental biology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                plge
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2007
                19 October 2007
                : 3
                : 10
                : e189
                Affiliations
                [1 ] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [2 ] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
                [3 ] Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai, China
                [4 ] Department of Medicine, Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
                [5 ] Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
                [6 ] Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
                University of Pennsylvania School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: ajdavidson@ 123456partners.org
                Article
                07-PLGE-RA-0376R2 plge-03-10-15
                10.1371/journal.pgen.0030189
                2042002
                17953490
                940c0409-e4e7-42b6-9652-dca45288c220
                Copyright: © 2007 Wingert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 May 2007
                : 11 September 2007
                Page count
                Pages: 17
                Categories
                Research Article
                Developmental Biology
                Nephrology
                Danio (Zebrafish)
                Teleost Fishes
                Vertebrates
                Custom metadata
                Wingert RA, Selleck R, Yu J, Song HD, Chen Z, et al. (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3(10): e189. doi: 10.1371/journal.pgen.0030189

                Genetics
                Genetics

                Comments

                Comment on this article