9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pseudogenes of annexin A2, novel prognosis biomarkers for diffuse gliomas

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diffuse gliomas is a kind of common malignant primary brain tumor. Pseudogenes have multilayered biological function in the progression of human cancers. In this study, Differentially Expressed Pseudogenes (DEPs) between glioblastomas and non-tumor controls were found by bioinformatics analysis, of which the annexin A2 pseudogenes (ANXA2P1, ANXA2P2 and ANXA2P3) were significantly up-regulated, along with the parent gene annexin A2 (ANXA2 ). Among four glioblastoma subtypes, ANXA2P1 and ANXA2P2 were preferentially expressed in mesenchymal subtype and less expressed in proneural subtype. Meanwhile, Pearson’s correlation analysis revealed that the expression level of ANXA2 was positively correlated with ANXA2 pseudogenes expression. Then, the expression patterns of ANXA2 and its pseudogenes were validated in diffuse glioma specimens (n=99) and non-tumor tissues (n=12) by quantitative real-time PCR (qRT-PCR). Additionally, Kaplan–Meier analysis revealed that highly expressed ANXA2 and annexin A2 pseudogenes were associated with the poor survival outcome of glioma patients. Cox regression analyses suggested that ANXA2, ANXA2P1 and ANXA2P2 were the independent prognosis factors for gliomas. Furthermore, down-regulation of ANXA2 and ANXA2 pseudogenes might contribute to the improvement of patients’ survival who received chemotherapy and radiotherapy. These results demonstrated that ANXA2 pseudogenes and ANXA2 could be used as the novel biomarkers for diagnosis, prognosis and target therapy of gliomas.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

          The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs possess a biological role in cancer cells that relies upon their ability to compete for microRNA binding and is independent of their protein-coding function. As a paradigm for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene (PTENP1) and the critical consequences of this interaction. We find that PTENP1 is biologically active as determined by its ability to regulate cellular levels of PTEN, and that it can exert a growth-suppressive role. We also show that PTENP1 locus is selectively lost in human cancer. We extend our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. Further, we demonstrate that the transcripts of protein coding genes such as PTEN are also biologically active. Together, these findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.

            Here, we demonstrate that protein-coding RNA transcripts can crosstalk by competing for common microRNAs, with microRNA response elements as the foundation of this interaction. We have termed such RNA transcripts as competing endogenous RNAs (ceRNAs). We tested this hypothesis in the context of PTEN, a key tumor suppressor whose abundance determines critical outcomes in tumorigenesis. By a combined computational and experimental approach, we identified and validated endogenous protein-coding transcripts that regulate PTEN, antagonize PI3K/AKT signaling, and possess growth- and tumor-suppressive properties. Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers. Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory function to protein-coding mRNAs. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A pseudogene long noncoding RNA network regulates PTEN transcription and translation in human cells

              PTEN is a tumor suppressor gene that has been shown to be under the regulatory control of a PTEN pseudogene expressed noncoding RNA, PTENpg1. Here, we characterize a previously unidentified PTENpg1 encoded antisense RNA (asRNA), which regulates PTEN transcription and PTEN mRNA stability. We find two PTENpg1 asRNA isoforms, alpha and beta. The alpha isoform functions in trans, localizes to the PTEN promoter, and epigenetically modulates PTEN transcription by the recruitment of DNMT3a and EZH2. In contrast, the beta isoform interacts with PTENpg1 through an RNA:RNA pairing interaction, which affects PTEN protein output via changes of PTENpg1 stability and microRNA sponge activity. Disruption of this asRNA-regulated network induces cell cycle arrest and sensitizes cells to doxorubicin, suggesting a biological function for the respective PTENpg1 expressed asRNAs.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                5 December 2017
                31 October 2017
                : 8
                : 63
                : 106962-106975
                Affiliations
                1 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
                2 Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
                3 Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
                Author notes
                Correspondence to: Hong-Hao Zhou, hhzhou2003@ 123456163.com
                Article
                22197
                10.18632/oncotarget.22197
                5739788
                Copyright: © 2017 Li et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Categories
                Research Paper

                Oncology & Radiotherapy

                pseudogene, diffuse gliomas, biomarkers, anxa2, anxa2p1 anxa2p2 anxa2p3

                Comments

                Comment on this article