7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of zaleplon metabolism by cimetidine in the human liver: in vitro studies with subcellular fractions and precision-cut liver slices.

      Xenobiotica; the Fate of Foreign Compounds in Biological Systems
      Acetamides, antagonists & inhibitors, pharmacokinetics, Cimetidine, Cytosol, metabolism, Dose-Response Relationship, Drug, Drug Interactions, Enzyme Inhibitors, Humans, Hypnotics and Sedatives, Inhibitory Concentration 50, Kinetics, Liver, drug effects, Models, Chemical, Pyrimidines, Subcellular Fractions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1. The effect of cimetidine on the metabolism of zaleplon (ZAL) in human liver subcellular fractions and precision-cut liver slices was investigated. 2. ZAL was metabolized to a number of products including 5-oxo-ZAL (M2), which is known to be formed by aldehyde oxidase, N-desethyl-ZAL (DZAL), which is known to be formed by CYP3A forms, and N-desethyl-5-oxo-ZAL (M1). 3. Human liver microsomes catalysed the NADPH-dependent metabolism of ZAL to DZAL. Kinetic analysis of three microsomal preparations revealed mean (+/-SEM) S(50) and V(max) of 310 +/- 24 micro M and 920 +/- 274 pmol/min/mg protein, respectively. 4. Human liver cytosol preparations catalysed the metabolism of ZAL to M2. Kinetic analysis of three cytosol preparations revealed mean (+/-SEM), K(m) and V(max) of 124 +/- 14 micro M and 564 +/- 143 pmol/min/mg protein, respectively. 5. Cimetidine inhibited ZAL metabolism to DZAL in liver microsomes and to M2 in the liver cytosol. With a ZAL substrate concentration of 62 micro M, the calculated mean (+/-SEM, n = 3) IC50 were 596 +/- 103 and 231 +/- 23 micro M for DZAL and M2 formation, respectively. Kinetic analysis revealed that cimetidine was a competitive inhibitor of M2 formation in liver cytosol with a mean (+/-SEM, n = 3) K(i) of 155 +/- 16 micro M. 6. Freshly cut human liver slices metabolized ZAL to a number of products including 1, M2 and DZAL. 7. Cimetidine inhibited ZAL metabolism in liver slices to M1 and M2, but not to DZAL. Kinetic analysis revealed that cimetidine was a competitive inhibitor of M2 formation in liver slices with an average (n = 2 preparations) K(i) of 506 micro M. 8. The results demonstrate that cimetidine can inhibit both the CYP3A and aldehyde oxidase pathways of ZAL metabolism in the human liver. Cimetidine appears to be a more potent inhibitor of aldehyde oxidase than of CYP3A forms and hence in vivo is likely to have a more marked effect on ZAL metabolism to M2 than on DZAL formation. 9. The results also demonstrate that precision-cut liver slices may be a useful model system for in vitro drug-interaction studies.

          Related collections

          Author and article information

          Comments

          Comment on this article