32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks

      review-article
      International Journal of Molecular Sciences
      MDPI
      circadian, immunosenescence, inflammaging, melatonin, microRNAs, sirtuin-1

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.

          Related collections

          Most cited references346

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammaging and 'Garb-aging'.

          'Inflammaging' refers to the chronic, low-grade inflammation that characterizes aging. Inflammaging is macrophage centered, involves several tissues and organs, including the gut microbiota, and is characterized by a complex balance between pro- and anti-inflammatory responses. Based on literature data, we argue that the major source of inflammatory stimuli is represented by endogenous/self, misplaced, or altered molecules resulting from damaged and/or dead cells and organelles (cell debris), recognized by receptors of the innate immune system. While their production is physiological and increases with age, their disposal by the proteasome via autophagy and/or mitophagy progressively declines. This 'autoreactive/autoimmune' process fuels the onset or progression of chronic diseases that can accelerate and propagate the aging process locally and systemically. Consequently, inflammaging can be considered a major target for antiaging strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses.

            Interleukin-17A (IL-17A) is a cytokine produced by T helper 17 (Th17) cells and plays important roles in the development of inflammatory diseases. Although IL-17F is highly homologous to IL-17A and binds the same receptor, the functional roles of this molecule remain largely unknown. Here, we demonstrated with Il17a(-/-), Il17f(-/-), and Il17a(-/-)Il17f(-/-) mice that IL-17F played only marginal roles, if at all, in the development of delayed-type and contact hypersensitivities, autoimmune encephalomyelitis, collagen-induced arthritis, and arthritis in Il1rn(-/-) mice. In contrast, both IL-17F and IL-17A were involved in host defense against mucoepithelial infection by Staphylococcus aureus and Citrobacter rodentium. IL-17A was produced mainly in T cells, whereas IL-17F was produced in T cells, innate immune cells, and epithelial cells. Although only IL-17A efficiently induced cytokines in macrophages, both cytokines activated epithelial innate immune responses. These observations indicate that IL-17A and IL-17F have overlapping yet distinct roles in host immune and defense mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutrient sensing and inflammation in metabolic diseases.

              The proper functioning of the pathways that are involved in the sensing and management of nutrients is central to metabolic homeostasis and is therefore among the most fundamental requirements for survival. Metabolic systems are integrated with pathogen-sensing and immune responses, and these pathways are evolutionarily conserved. This close functional and molecular integration of the immune and metabolic systems is emerging as a crucial homeostatic mechanism, the dysfunction of which underlies many chronic metabolic diseases, including type 2 diabetes and atherosclerosis. In this Review we provide an overview of several important networks that sense and manage nutrients and discuss how they integrate with immune and inflammatory pathways to influence the physiological and pathological metabolic states in the body.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                11 March 2019
                March 2019
                : 20
                : 5
                : 1223
                Affiliations
                Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany; rhardel@ 123456gwdg.de ; Tel.: +49-551-395414
                Author information
                https://orcid.org/0000-0003-0178-6378
                Article
                ijms-20-01223
                10.3390/ijms20051223
                6429360
                30862067
                9419049f-5072-466d-967e-8a533b7de48e
                © 2019 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 February 2019
                : 07 March 2019
                Categories
                Review

                Molecular biology
                circadian,immunosenescence,inflammaging,melatonin,micrornas,sirtuin-1
                Molecular biology
                circadian, immunosenescence, inflammaging, melatonin, micrornas, sirtuin-1

                Comments

                Comment on this article