3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The impact of high-flow nasal cannula (HFNC) on coughing distance: implications on its use during the novel coronavirus disease outbreak

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor, Novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 threatens healthcare resources throughout the world. This is particularly true for the patients who develop moderate to severe respiratory failure and require oxygen supplementation devices such as high-flow nasal cannula (HFNC).1 The HFNC uses humidification to allow the delivery of up to 100% oxygen at flow rates of up to 60 L·min−1; however, there is a concern this may aerosolize respiratory tract pathogens. The World Health Organization (WHO) released interim guidance on the management of severe respiratory infection when COVID-19 is suspected.2 Using evidence from several recently published studies,2,3 WHO guidance proffers that HFNC do not create wide-spread dispersion of exhaled air and therefore should be associated with low risk of transmission of respiratory viruses. This document also recommends wearing a standard medical face mask if the healthcare worker is within 2 m of the patient and there is a physical bed separation of at least 1 m. We carried out an experiment to simulate a patient coughing while using HFNC to assess the maximum distance of droplet dispersion. Formal ethics approval was waived by the Office of Human Research Protection Programme, National Healthcare Group, Singapore. The authors (n = 5), with no history of lung disease, participated. All gargled 10 mL of diluted red then blue food dye. They were then seated with their mouths approximately 1.30 m from the floor, inhaled to vital capacity, and coughed with an open mouth. Each participant coughed twice and the furthest distance that a visible food dye droplet travelled on the ground was measured. The process was repeated while wearing a well-fitting HFNC (2004F7015 High/Low Blender, Bio-Med USA and Optiflo, Fisher Paykel Healthcare New Zealand) at 60 L·min−1 flow. We showed that in these healthy volunteers, cough-generated droplets spread to a mean (standard deviation) distance of 2.48 (1.03) m at baseline and 2.91 (1.09) m with HFNC. A maximum cough distance of 4.50 m was reported when using HFNC (Table). Table Droplet dispersion distances during simulated coughing Participant Distance without HFNC (m) Distance with HFNC (m) Difference in distance (m) Female, 159 cm, 46 kg 1.03 1.53 0.50 Male, 171 cm, 76 kg 2.33 3.17 0.84 Male, 171 cm, 79 kg 3.90 4.50 0.60 Male, 170 cm, 70 kg 2.43 2.41 − 0.02 Female, 161 cm, 71 kg 2.73 2.92 0.19 Mean (SD) values 2.48 (1.03) 2.91 (1.09) 0.42 (0.34) HFNC = high-flow nasal cannula; SD = standard deviation Hui et al. 3 used a simulator model and a smoke-laser illumination technique to investigate the dispersion of droplets amplified by HFNC. They showed that when HFNC flow rates were increased from 10–60 L·min−1, non-cough exhaled air distances (in the forward direction) increased from 6.5 to 17.2 cm, and up to 62 cm (in the lateral direction). It is uncertain if such short distances are accurate in patients who are coughing. Leung et al.4 found no evidence of increased surrounding surface contamination when using HFNC in patients with gram negative bacterial pneumonia. Nevertheless, extrapolating findings from patients with bacterial pneumonia to those with viral pneumonia may not be rational. In our study, four of the five volunteers’ cough droplets travelled further than the WHO-recommended 2 m safe exclusion zone. Overall, the distance of droplet dispersion from coughing increased by an average of 0.42 m with HFNC. Using the other studies3,4 as a guide, the safest way to use HFNC during the current COVID-19 outbreak is to embrace the potential of nosocomial airborne transmission and ensure HFNC devices are at least used in single occupancy rooms or negative pressure airborne isolation rooms5 when possible. Healthcare workers caring for those using HFNC should be wearing full airborne personal protective equipment (i.e., N95 mask or equivalent, gown, gloves, goggles, hair covers, and face shield or hoods).

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients

            A global health emergency has been declared by the World Health Organization as the 2019-nCoV outbreak spreads across the world, with confirmed patients in Canada. Patients infected with 2019-nCoV are at risk for developing respiratory failure and requiring admission to critical care units. While providing optimal treatment for these patients, careful execution of infection control measures is necessary to prevent nosocomial transmission to other patients and to healthcare workers providing care. Although the exact mechanisms of transmission are currently unclear, human-to-human transmission can occur, and the risk of airborne spread during aerosol-generating medical procedures remains a concern in specific circumstances. This paper summarizes important considerations regarding patient screening, environmental controls, personal protective equipment, resuscitation measures (including intubation), and critical care unit operations planning as we prepare for the possibility of new imported cases or local outbreaks of 2019-nCoV. Although understanding of the 2019-nCoV virus is evolving, lessons learned from prior infectious disease challenges such as Severe Acute Respiratory Syndrome will hopefully improve our state of readiness regardless of the number of cases we eventually manage in Canada.
              Bookmark

              Author and article information

              Contributors
              will.loh@nus.edu.sg
              Journal
              Can J Anaesth
              Can J Anaesth
              Canadian Journal of Anaesthesia
              Springer International Publishing (Cham )
              0832-610X
              1496-8975
              18 March 2020
              : 1-2
              Affiliations
              [1 ]GRID grid.412106.0, ISNI 0000 0004 0621 9599, Department of Anaesthesia, , National University Hospital, ; Singapore, Singapore
              [2 ]GRID grid.412106.0, ISNI 0000 0004 0621 9599, Division of Critical Care – Respiratory Therapy, , National University Hospital, ; Singapore, Singapore
              [3 ]GRID grid.412106.0, ISNI 0000 0004 0621 9599, National University Hospital, ; Singapore, Singapore
              [4 ]GRID grid.412106.0, ISNI 0000 0004 0621 9599, Department of Medicine, Division of Infectious Diseases, , National University Hospital, ; Singapore, Singapore
              Article
              1634
              10.1007/s12630-020-01634-3
              7090637
              32189218
              941e02ad-32d3-4e12-a309-c5823d2348dc
              © Canadian Anesthesiologists' Society 2020

              This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

              History
              : 15 March 2020
              : 15 March 2020
              Categories
              Correspondence

              Anesthesiology & Pain management
              Anesthesiology & Pain management

              Comments

              Comment on this article