40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ectopic Osteogenesis of Macroscopic Tissue Constructs Assembled from Human Mesenchymal Stem Cell-Laden Microcarriers through In Vitro Perfusion Culture

      research-article
      , , * , * , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We had previously demonstrated the feasibility of preparing a centimeter-sized bone tissue construct by following a modular approach. In the present study, the objectives were to evaluate osteogenesis and tissue formation of human amniotic mesenchymal stem cells-laden CultiSpher S microcarriers during in vitro perfusion culture and after subcutaneous implantation. Microtissues were prepared in dynamic culture using spinner flasks in 28 days. In comparison with 1-week perfusion culture, microtissues became more obviously fused, demonstrating significantly higher cellularity, metabolic activity, ALP activity and calcium content while maintaining cell viability after 2-week perfusion. After subcutaneous implantation in nude mice for 6 and 12 weeks, all explants showed tight contexture, suggesting profound tissue remodeling in vivo. In addition, 12-week implantation resulted in slightly better tissue properties. However, in vitro perfusion culture time exerted great influence on the properties of corresponding explants. Degradation of microcarriers was more pronounced in the explants of 2-week perfused macrotissues compared to those of 1-week perfusion and directly implanted microtissues. Moreover, more blood vessel infiltration and bone matrix deposition with homogeneous spatial distribution were found in the explants of 2-week perfused macrotissues. Taken together, in vitro perfusion culture time is critical in engineering bone tissue replacements using such a modular approach, which holds great promise for bone regeneration.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue engineering.

          The loss or failure of an organ or tissue is one of the most frequent, devastating, and costly problems in human health care. A new field, tissue engineering, applies the principles of biology and engineering to the development of functional substitutes for damaged tissue. This article discusses the foundations and challenges of this interdisciplinary field and its attempts to provide solutions to tissue creation and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organ printing: tissue spheroids as building blocks.

            Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering principles of clinical cell-based tissue engineering.

              Tissue engineering is a rapidly evolving discipline that seeks to repair, replace, or regenerate specific tissues or organs by translating fundamental knowledge in physics, chemistry, and biology into practical and effective materials, devices, systems, and clinical strategies. Stem cells and progenitors that are capable of forming new tissue with one or more connective tissue phenotypes are available from many adult tissues and are defined as connective tissue progenitors. There are four major cell-based tissue-engineering strategies: (1) targeting local connective tissue progenitors where new tissue is desired, (2) transplanting autogenous connective tissue progenitors, (3) transplanting culture-expanded or modified connective tissue progenitors, and (4) transplanting fully formed tissue generated in vitro or in vivo. Stem cell function is controlled by changes in stem cell activation and self-renewal or by changes in the proliferation, migration, differentiation, or survival of the progeny of stem cell activation, the downstream progenitor cells. Three-dimensional porous scaffolds promote new tissue formation by providing a surface and void volume that promotes the attachment, migration, proliferation, and desired differentiation of connective tissue progenitors throughout the region where new tissue is needed. Critical variables in scaffold design and function include the bulk material or materials from which it is made, the three-dimensional architecture, the surface chemistry, the mechanical properties, the initial environment in the area of the scaffold, and the late scaffold environment, which is often determined by degradation characteristics. Local presentation or delivery of bioactive molecules can change the function of connective tissue progenitors (activation, proliferation, migration, differentiation, or survival) in a manner that results in new or enhanced local tissue formation. All cells require access to substrate molecules (oxygen, glucose, and amino acids). A balance between consumption and local delivery of these substrates is needed if cells are to survive. Transplanted cells are particularly vulnerable. Theoretical calculations can be used to explore the relationships among cell density, diffusion distance, and cell viability within a graft and to design improved strategies for transplantation of connective tissue progenitors. Rational strategies for tissue engineering seek to optimize new tissue formation through the logical selection of conditions that modulate the performance of connective tissue progenitors in a graft site to produce a desired tissue. This increasingly involves strategies that combine cells, matrices, inductive stimuli, and techniques that enhance the survival and performance of local or transplanted connective tissue progenitors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                2 October 2014
                : 9
                : 10
                : e109214
                Affiliations
                [1]State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, China
                National Institutes of Health, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZY YZ WST. Performed the experiments: MC MZ. Analyzed the data: MC MZ ZY YZ. Contributed reagents/materials/analysis tools: ZY YZ WST. Wrote the paper: MC ZY YZ.

                Article
                PONE-D-14-26937
                10.1371/journal.pone.0109214
                4183582
                25275528
                942ae664-bd24-4147-be60-d8934954aec8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 June 2014
                : 29 August 2014
                Page count
                Pages: 12
                Funding
                This research was supported by Basic Research Project of Shanghai Science and Technology Commission (12JC1403101), SRF for ROCS (SEM), National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204) and National Natural Science Foundation of China (31170951). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biotechnology
                Bioengineering
                Tissue Engineering
                Engineering and Technology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article