22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Noncoding RNAs are an underexplored reservoir of regulatory molecules in eukaryotes. We analyzed the environmental response of roots to phosphorus (Pi) nutrition to understand how a change in availability of an essential element is managed. Pi availability influenced translational regulation mediated by small upstream ORFs on protein-coding mRNAs. Discovery, classification, and evaluation of long noncoding RNAs (lncRNAs) associated with translating ribosomes uncovered diverse new examples of translational regulation. These included Pi-regulated small peptide synthesis, ribosome-coupled phased small interfering RNA production, and the translational regulation of natural antisense RNAs and other regulatory RNAs. This study demonstrates that translational control contributes to the stability and activity of regulatory RNAs, providing an avenue for manipulation of traits.

          Abstract

          Eukaryotic transcriptomes contain a major non–protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA ( tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The expanding world of small RNAs in plants.

          Plant genomes encode various small RNAs that function in distinct, yet overlapping, genetic and epigenetic silencing pathways. However, the abundance and diversity of small-RNA classes varies among plant species, suggesting coevolution between environmental adaptations and gene-silencing mechanisms. Biogenesis of small RNAs in plants is well understood, but we are just beginning to uncover their intricate regulation and activity. Here, we discuss the biogenesis of plant small RNAs, such as microRNAs, secondary siRNAs and heterochromatic siRNAs, and their diverse cellular and developmental functions, including in reproductive transitions, genomic imprinting and paramutation. We also discuss the diversification of small-RNA-directed silencing pathways through the expansion of RNA-dependent RNA polymerases, DICER proteins and ARGONAUTE proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biogenesis, turnover, and mode of action of plant microRNAs.

            MicroRNAs (miRNAs) are small RNAs that control gene expression through silencing of target mRNAs. Mature miRNAs are processed from primary miRNA transcripts by the endonuclease activity of the DICER-LIKE1 (DCL1) protein complex. Mechanisms exist that allow the DCL1 complex to precisely excise the miRNA from its precursor. Our understanding of miRNA biogenesis, particularly its intersection with transcription and other aspects of RNA metabolism such as splicing, is still evolving. Mature miRNAs are incorporated into an ARGONAUTE (AGO) effector complex competent for target gene silencing but are also subjected to turnover through a degradation mechanism that is beginning to be understood. The mechanisms of miRNA target silencing in plants are no longer limited to AGO-catalyzed slicing, and the contribution of translational inhibition is increasingly appreciated. Here, we review the mechanisms underlying the biogenesis, turnover, and activities of plant miRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data

              Summary: ShortRead is a package for input, quality assessment, manipulation and output of high-throughput sequencing data. ShortRead is provided in the R and Bioconductor environments, allowing ready access to additional facilities for advanced statistical analysis, data transformation, visualization and integration with diverse genomic resources. Availability and Implementation: This package is implemented in R and available at the Bioconductor web site; the package contains a ‘vignette’ outlining typical work flows. Contact: mtmorgan@fhcrc.org
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                14 November 2017
                30 October 2017
                30 October 2017
                : 114
                : 46
                : E10018-E10027
                Affiliations
                [1] aCenter for Plant Cell Biology, University of California, Riverside , CA 92521;
                [2] bDepartment of Botany and Plant Sciences, University of California, Riverside , CA 92521;
                [3] cInstitute of Plant Sciences Paris-Saclay (IPS2), CNRS, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France;
                [4] dDepartment of Biology, Eidgenössiche Technische Hochschule , 8092 Zurich, Switzerland;
                [5] eDepartment of Biology, University of Pennsylvania , Philadelphia, PA 19104
                Author notes
                1To whom correspondence should be addressed. Email: serres@ 123456ucr.edu .

                Contributed by Julia Bailey-Serres, October 3, 2017 (sent for review May 22, 2017; reviewed by Javier Paz-Ares and Shu-Hsing Wu)

                Author contributions: J.B., S.J.G., B.D.G., M.C., and J.B.-S. designed research; J.B., K.B., and S.J.G. performed research; J.B. and M.C. contributed new reagents/analytic tools; J.B., K.B., and J.B.-S. analyzed data; and J.B., K.B., M.C., and J.B.-S. wrote the paper.

                Reviewers: J.P.-A., Spanish National Center of Biotechnology; and S.-H.W., Academia Sinica.

                Article
                201708433
                10.1073/pnas.1708433114
                5699049
                29087317
                9437fa26-e008-40f9-be19-b8e882cbb4db
                Copyright © 2017 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 10
                Funding
                Funded by: National Science Foundation (NSF) 100000001
                Award ID: MCB-1021969
                Funded by: Marie Curie European Economic Community Fellowship
                Award ID: PIOF-GA-2012-327954
                Funded by: National Science Foundation (NSF) 100000001
                Award ID: DBI-1429826
                Funded by: HHS | National Institutes of Health (NIH) 100000002
                Award ID: S10-OD016290-01A1
                Categories
                PNAS Plus
                Biological Sciences
                Plant Biology
                PNAS Plus

                long noncoding rna,ribosome footprint profiling,small peptides,phosphate deficiency,arabidopsis thaliana

                Comments

                Comment on this article