12
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oncometabolite induced primary cilia loss in pheochromocytoma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary cilia are sensory organelles involved in regulation of cellular signaling. Cilia loss is frequently observed in tumors; yet, the responsible mechanisms and consequences for tumorigenesis remain unclear. We demonstrate that cilia structure and function is disrupted in human pheochromocytomas – endocrine tumors of the adrenal medulla. This is concomitant with transcriptional changes within cilia-mediated signaling pathways that are associated with tumorigenesis generally and pheochromocytomas specifically. Importantly, cilia loss was most dramatic in patients with germline mutations in the pseudohypoxia-linked genes SDHx and VHL. Using a pheochromocytoma cell line derived from rat, we show that hypoxia and oncometabolite-induced pseudohypoxia are key drivers of cilia loss and identify that this is dependent on activation of an Aurora-A/HDAC6 cilia resorption pathway. We also show cilia loss drives dramatic transcriptional changes associated with proliferation and tumorigenesis. Our data provide evidence for primary cilia dysfunction contributing to pathogenesis of pheochromocytoma by a hypoxic/pseudohypoxic mechanism and implicates oncometabolites as ciliary regulators. This is important as pheochromocytomas can cause mortality by mechanisms including catecholamine production and malignant transformation, while hypoxia is a general feature of solid tumors. Moreover, pseudohypoxia-induced cilia resorption can be pharmacologically inhibited, suggesting potential for therapeutic intervention.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma.

          We report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine.
            • Record: found
            • Abstract: found
            • Article: not found

            Cep164, a novel centriole appendage protein required for primary cilium formation

            Primary cilia (PC) function as microtubule-based sensory antennae projecting from the surface of many eukaryotic cells. They play important roles in mechano- and chemosensory perception and their dysfunction is implicated in developmental disorders and severe diseases. The basal body that functions in PC assembly is derived from the mature centriole, a component of the centrosome. Through a small interfering RNA screen we found several centrosomal proteins (Ceps) to be involved in PC formation. One newly identified protein, Cep164, was indispensable for PC formation and hence characterized in detail. By immunogold electron microscopy, Cep164 could be localized to the distal appendages of mature centrioles. In contrast to ninein and Cep170, two components of subdistal appendages, Cep164 persisted at centrioles throughout mitosis. Moreover, the localizations of Cep164 and ninein/Cep170 were mutually independent during interphase. These data implicate distal appendages in PC formation and identify Cep164 as an excellent marker for these structures.
              • Record: found
              • Abstract: found
              • Article: not found

              Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis.

              Primary cilia are present on most mammalian cells and are implicated in transducing Hedgehog (Hh) signals during development; however, the prevalence of cilia on human tumors remains unclear, and the role of cilia in cancer has not been examined. Here we show that human basal cell carcinomas (BCCs) are frequently ciliated, and we test the role of cilia in BCC by conditionally deleting Kif3a (encoding kinesin family member 3A) or Ift88 (encoding intraflagellar transport protein 88), genes required for ciliogenesis, in two Hh pathway-dependent mouse tumor models. Ciliary ablation strongly inhibited BCC-like tumors induced by an activated form of Smoothened. In contrast, removal of cilia accelerated tumors induced by activated Gli2, a transcriptional effector of Hh signaling. These seemingly paradoxical effects are consistent with a dual role for cilia in mediating both the activation and the repression of the Hh signaling pathway. Our findings demonstrate that cilia function as unique signaling organelles that can either mediate or suppress tumorigenesis depending on the nature of the oncogenic initiating event.

                Author and article information

                Journal
                Endocr Relat Cancer
                Endocr. Relat. Cancer
                ERC
                Endocrine-Related Cancer
                Bioscientifica Ltd (Bristol )
                1351-0088
                1479-6821
                January 2019
                05 September 2018
                : 26
                : 1
                : 165-180
                Affiliations
                [1 ]William Harvey Research Institute Barts and the London School of Medicine, Queen Mary University of London, London, UK
                [2 ]Department of Endocrinology St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
                [3 ]Institute of Bioengineering and School of Engineering and Material Sciences Queen Mary University of London, London, UK
                [4 ]Barts Cancer Institute Queen Mary University of London, London, UK
                [5 ]Department of Diabetes and Endocrinology University College London Hospital, London, UK
                Author notes
                Correspondence should be addressed to J P Chapple: j.p.chapple@ 123456qmul.ac.uk
                Article
                ERC180134
                10.1530/ERC-18-0134
                6215910
                30345732
                943db291-e920-4001-aa2f-d8878815fd3e
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 27 August 2018
                : 05 September 2018
                Categories
                Research

                Oncology & Radiotherapy
                pheochromocytoma,primary cilia,hypoxia,succinate dehydrogenase,von hippel–lindau protein

                Comments

                Comment on this article

                Related Documents Log