39
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Strategies to improve retention in randomised trials

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Loss to follow-up from randomised trials can introduce bias and reduce study power, affecting the generalisability, validity and reliability of results. Many strategies are used to reduce loss to follow-up and improve retention but few have been formally evaluated.

          Objectives

          To quantify the effect of strategies to improve retention on the proportion of participants retained in randomised trials and to investigate if the effect varied by trial strategy and trial setting.

          Search methods

          We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PreMEDLINE, EMBASE, PsycINFO, DARE, CINAHL, Campbell Collaboration's Social, Psychological, Educational and Criminological Trials Register, and ERIC. We handsearched conference proceedings and publication reference lists for eligible retention trials. We also surveyed all UK Clinical Trials Units to identify further studies.

          Selection criteria

          We included eligible retention trials of randomised or quasi-randomised evaluations of strategies to increase retention that were embedded in 'host' randomised trials from all disease areas and healthcare settings. We excluded studies aiming to increase treatment compliance.

          Data collection and analysis

          We contacted authors to supplement or confirm data that we had extracted. For retention trials, we recorded data on the method of randomisation, type of strategy evaluated, comparator, primary outcome, planned sample size, numbers randomised and numbers retained. We used risk ratios (RR) to evaluate the effectiveness of the addition of strategies to improve retention. We assessed heterogeneity between trials using the Chi 2 and I 2 statistics. For main trials that hosted retention trials, we extracted data on disease area, intervention, population, healthcare setting, sequence generation and allocation concealment.

          Main results

          We identified 38 eligible retention trials. Included trials evaluated six broad types of strategies to improve retention. These were incentives, communication strategies, new questionnaire format, participant case management, behavioural and methodological interventions. For 34 of the included trials, retention was response to postal and electronic questionnaires with or without medical test kits. For four trials, retention was the number of participants remaining in the trial. Included trials were conducted across a spectrum of disease areas, countries, healthcare and community settings. Strategies that improved trial retention were addition of monetary incentives compared with no incentive for return of trial-related postal questionnaires (RR 1.18; 95% CI 1.09 to 1.28, P value < 0.0001), addition of an offer of monetary incentive compared with no offer for return of electronic questionnaires (RR 1.25; 95% CI 1.14 to 1.38, P value < 0.00001) and an offer of a GBP20 voucher compared with GBP10 for return of postal questionnaires and biomedical test kits (RR 1.12; 95% CI 1.04 to 1.22, P value < 0.005). The evidence that shorter questionnaires are better than longer questionnaires was unclear (RR 1.04; 95% CI 1.00 to 1.08, P value = 0.07) and the evidence for questionnaires relevant to the disease/condition was also unclear (RR 1.07; 95% CI 1.01 to 1.14). Although each was based on the results of a single trial, recorded delivery of questionnaires seemed to be more effective than telephone reminders (RR 2.08; 95% CI 1.11 to 3.87, P value = 0.02) and a 'package' of postal communication strategies with reminder letters appeared to be better than standard procedures (RR 1.43; 95% CI 1.22 to 1.67, P value < 0.0001). An open trial design also appeared more effective than a blind trial design for return of questionnaires in one fracture prevention trial (RR 1.37; 95% CI 1.16 to 1.63, P value = 0.0003).

          There was no good evidence that the addition of a non-monetary incentive, an offer of a non-monetary incentive, 'enhanced' letters, letters delivered by priority post, additional reminders, or questionnaire question order either increased or decreased trial questionnaire response/retention. There was also no evidence that a telephone survey was either more or less effective than a monetary incentive and a questionnaire. As our analyses are based on single trials, the effect on questionnaire response of using offers of charity donations, sending reminders to trial sites and when a questionnaire is sent, may need further evaluation. Case management and behavioural strategies used for trial retention may also warrant further evaluation.

          Authors' conclusions

          Most of the retention trials that we identified evaluated questionnaire response. There were few evaluations of ways to improve participants returning to trial sites for trial follow-up. Monetary incentives and offers of monetary incentives increased postal and electronic questionnaire response. Some other strategies evaluated in single trials looked promising but need further evaluation. Application of the findings of this review would depend on trial setting, population, disease area, data collection and follow-up procedures.

          PLAIN LANGUAGE SUMMARY
          Methods that might help to keep people in randomised trials

          Background

          Most trials follow people up to collect data through personal contact after they have been recruited. Some trials get data from other sources, such as routine collected data or disease registers. There are many ways to collect data from people in trials, and these include using letters, the internet, telephone calls, text messaging, face-to-face meetings or the return of medical test kits. Most trials have missing data, for example, because people are too busy to reply, are unable to attend a clinic, have moved or no longer want to participate. Sometimes data has not been recorded at study sites, or are not sent to the trial co-ordinating centre. Researchers call this 'loss to follow-up', 'drop out' or 'attrition' and it can affect the trial's results. For example, if the people with the most or least severe symptoms do not return questionnaires or attend a follow-up visit, this will bias the findings of the trial. Many methods are used by researchers to keep people in trials. These encourage people to send back data by questionnaire, return to a clinic or hospital for trial-related tests, or be seen by a health or community care worker.

          Study characteristics

          This review identified methods that encouraged people to stay in trials. We searched scientific databases for randomised studies (where people are allocated to one of two or more possible treatments in a random manner) or quasi-randomised studies (where allocation is not really random, e.g. based on date of birth, order in which they attended clinic) that compared methods of increasing retention in trials. We included trials of participants from any age, gender, ethnic, cultural, language and geographic groups.

          Key results

          The methods that appeared to work were offering or giving a small amount of money for return of a completed questionnaire and enclosing a small amount of money with a questionnaire with the promise of a further small amount of money for return of a filled in questionnaire. The effect of other ways to keep people in trials is still not clear and more research is needed to see if these really do work. Such methods are shorter questionnaires, sending questionnaires by recorded delivery, using a trial design where people know which treatment they will receive, sending specially designed letters with a reply self addressed stamped envelope followed by a number of reminders, offering a donation to charity or entry into a prize draw, sending a reminder to the study site about participants to follow-up, sending questionnaires close to the time the patient was last followed-up, managing peoples' follow-up, conducting follow-up by telephone and changing the order of questionnaire questions.

          Quality of evidence

          The methods that we identified were tested in trials run in many different disease areas and settings and, in some cases, were tested in only one trial. Therefore, more studies are needed to help decide whether our findings could be used in other research fields.

          Related collections

          Most cited references 150

          • Record: found
          • Abstract: not found
          • Article: not found

          Measuring inconsistency in meta-analyses.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bias in meta-analysis detected by a simple, graphical test.

            Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews. Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease.

              Lung cancer and cardiovascular disease are major causes of death in the United States. It has been proposed that carotenoids and retinoids are agents that may prevent these disorders. We conducted a multicenter, randomized, double-blind, placebo-controlled primary prevention trial -- the Beta Carotene and Retinol Efficacy Trial -- involving a total of 18,314 smokers, former smokers, and workers exposed to asbestos. The effects of a combination of 30 mg of beta carotene per day and 25,000 IU of retinol (vitamin A) in the form of retinyl palmitate per day on the primary end point, the incidence of lung cancer, were compared with those of placebo. A total of 388 new cases of lung cancer were diagnosed during the 73,135 person-years of follow-up (mean length of follow-up, 4.0 years). The active-treatment group had a relative risk of lung cancer of 1.28 (95 percent confidence interval, 1.04 to 1.57; P=0.02), as compared with the placebo group. There were no statistically significant differences in the risks of other types of cancer. In the active-treatment group, the relative risk of death from any cause was 1.17 (95 percent confidence interval, 1.03 to 1.33); of death from lung cancer, 1.46 (95 percent confidence interval, 1.07 to 2.00); and of death from cardiovascular disease, 1.26 (95 percent confidence interval, 0.99 to 1.61). On the basis of these findings, the randomized trial was stopped 21 months earlier than planned; follow-up will continue for another 5 years. After an average of four years of supplementation, the combination of beta carotene and vitamin A had no benefit and may have had an adverse effect on the incidence of lung cancer and on the risk of death from lung cancer, cardiovascular disease, and any cause in smokers and workers exposed to asbestos.
                Bookmark

                Author and article information

                Journal
                Cochrane Database Syst Rev
                Cochrane Database Syst Rev
                cd
                The Cochrane Database of Systematic Reviews
                John Wiley & Sons, Ltd (Chichester, UK )
                1469-493X
                03 December 2013
                : 12
                : 1-126
                Affiliations
                [1 ]Meta-analysis Group, MRC Clinical Trials Unit London, UK
                [2 ]Meta-analysis Group, MRC Clinical Trials Unit at UCL London, UK
                [3 ]Meta-analysis Group, MRC Clinical Trials Unit London, UK
                [4 ]Social and Public Health Sciences Unit, Medical Research Council Glasgow, UK
                [5 ]Research Department of Primary Care and Population Health, University College London London, UK
                Author notes
                Contact address: Valerie C Brueton, Meta-analysis Group, MRC Clinical Trials Unit, 125 Kingsway, London, WC2B 6NH, UK. vcb@ 123456ctu.mrc.ac.uk .

                Editorial group: Cochrane Methodology Review Group.

                Publication status and date: New, published in Issue 12, 2013.

                Review content assessed as up-to-date: 13 June 2013.

                Article
                10.1002/14651858.MR000032.pub2
                4470347
                24297482
                943e2f1e-ad91-47b0-bc1b-486d6e126d50
                Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
                Categories
                Review

                Comments

                Comment on this article