14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Oxidative Neurotoxicity and Scopolamine-Induced Memory Impairment by γ-Mangostin: In Vitro and In Vivo Evidence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among a series of xanthones identified from mangosteen, the fruit of Garcinia mangostana L. (Guttifereae), α- and γ-mangostins are known to be major constituents exhibiting diverse biological activities. However, the effects of γ-mangostin on oxidative neurotoxicity and impaired memory are yet to be elucidated. In the present study, the protective effect of γ-mangostin on oxidative stress-induced neuronal cell death and its underlying action mechanism(s) were investigated and compared to that of α-mangostin using primary cultured rat cortical cells. In addition, the effect of orally administered γ-mangostin on scopolamine-induced memory impairment was evaluated in mice. We found that γ-mangostin exhibited prominent protection against H 2O 2- or xanthine/xanthine oxidase-induced oxidative neuronal death and inhibited reactive oxygen species (ROS) generation triggered by these oxidative insults. In contrast, α-mangostin had no effects on the oxidative neuronal damage or associated ROS production. We also found that γ-mangostin, not α-mangostin, significantly inhibited H 2O 2-induced DNA fragmentation and activation of caspases 3 and 9, demonstrating its antiapoptotic action. In addition, only γ-mangostin was found to effectively inhibit lipid peroxidation and DPPH radical formation, while both mangostins inhibited β-secretase activity. Furthermore, we observed that the oral administration of γ-mangostin at dosages of 10 and 30 mg/kg markedly improved scopolamine-induced memory impairment in mice. Collectively, these results provide both in vitro and in vivo evidences for the neuroprotective and memory enhancing effects of γ-mangostin. Multiple mechanisms underlying this neuroprotective action were suggested in this study. Based on our findings, γ-mangostin could serve as a potentially preferable candidate over α-mangostin in combatting oxidative stress-associated neurodegenerative diseases including Alzheimer's disease.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The role of acetylcholine in learning and memory.

          Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triggering and modulation of apoptosis by oxidative stress.

            Cell survival requires multiple factors, including appropriate proportions of molecular oxygen and various antioxidants. Although most oxidative insults can be overcome by the cell's natural defenses, sustained perturbation of this balance may result in either apoptotic or necrotic cell death. Numerous, recent studies have shown that the mode of cell death that occurs depends on the severity of the insult. Oxidants and antioxidants can not only determine cell fate, but can also modulate the mode of cell death. Effects of oxidative stress on components of the apoptotic machinery may mediate this modulation. This review will address some of the current paradigms for oxidative stress and apoptosis, and discuss the potential mechanisms by which oxidants can modulate the apoptotic pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BACE1: the beta-secretase enzyme in Alzheimer's disease.

              Data that have accumulated for well over a decade have implicated the beta-amyloid (Abeta) peptide as a central player in the pathogenesis of Alzheimer's disease (AD). Amyloid plaques, composed primarily of Abeta progressively form in the brains of AD patients, and mutations in three genes (amyloid precursor protein [APP] and presenilin 1 and 2 [PS1 and PS2]) cause early-onset familial AD (FAD) by directly increasing production of the toxic, plaque-promoting Abeta42 peptide. Given the strong association between Abeta and AD, it is likely that therapeutic strategies to lower the levels of Abeta in the brain should prove beneficial for the treatment of AD. One such strategy could involve inhibiting the enzymes that generate Abeta. Abeta is a product of catabolism of the large type-I membrane protein APP. Two proteases, called beta- and gamma-secretase, endoproteolyze APP to liberate the Abeta peptide. Recently, the molecules responsible for these proteolytic activities have been identified. Several lines of evidence suggest that the PS1 and PS2 proteins are gamma-secretase, and the identity of beta-secretase has been shown to be the novel transmembrane aspartic protease, beta-site APP-cleaving enzyme 1 (BACE1; also called Asp2 and memapsin 2). BACE2, a protease homologous to BACE1, was also identified, and together the two enzymes define a new family of transmembrane aspartic proteases. BACE1 exhibits all the functional properties of beta-secretase, and as the key enzyme that initiates the formation of Abeta, BACE1 is an attractive drug target for AD. This review discusses the identification and initial characterization of BACE1 and BACE2, and summarizes recent studies of BACE1 knockout mice that have validated BACE1 as the authentic beta-secretase in vivo.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2019
                24 March 2019
                : 2019
                : 3640753
                Affiliations
                College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
                Author notes

                Guest Editor: Luciana Scotti

                Author information
                http://orcid.org/0000-0001-6964-1779
                http://orcid.org/0000-0003-3175-8589
                Article
                10.1155/2019/3640753
                6451816
                31019651
                94452037-1f06-497a-aef0-529bfefe6f3d
                Copyright © 2019 Youngmun Lee et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 October 2018
                : 14 December 2018
                : 9 January 2019
                Funding
                Funded by: GRRC Program of Gyeonggi Province
                Award ID: GRRC DONGGUK 2018-B01
                Funded by: Ministry of Science, ICT and Future Planning
                Award ID: NRF-2018R1A5A2023127
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                scite_

                Similar content347

                Cited by12

                Most referenced authors579