37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Previous studies have suggested that elevated exposure to disinfection by-products (DBPs) in drinking water during gestation may result in adverse birth outcomes. However, the findings of these studies remain inconclusive.

          Objective:

          The purpose of our study was to examine the association between blood biomarkers of late pregnancy exposure to trihalomethanes (THMs) in drinking water and fetal growth and gestational age.

          Methods:

          We recruited 1,184 pregnant women between 2011 and 2013 in Wuhan and Xiaogan City, Hubei, China. Maternal blood THM concentrations, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM), were measured as exposure biomarkers during late pregnancy. We estimated associations with gestational age and fetal growth indicators [birth weight, birth length, and small for gestational age (SGA)].

          Results:

          Total THMs (TTHMs; sum of TCM, BDCM, DBCM, and TBM) were associated with lower mean birth weight (–60.9 g; 95% CI: –116.2, –5.6 for the highest vs. lowest tertile; p for trend = 0.03), and BDCM and DBCM exposures were associated with smaller birth length (e.g., –0.20 cm; 95% CI: –0.37, –0.04 for the highest vs. lowest tertile of DBCM; p for trend = 0.02). SGA was increased in association with the second and third tertiles of TTHMs (OR = 2.91; 95% CI: 1.32, 6.42 and OR = 2.25; 95% CI: 1.01, 5.03; p for trend = 0.08).

          Conclusions:

          Our results suggested that elevated maternal THM exposure may adversely affect fetal growth.

          Citation:

          Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. 2016. Blood biomarkers of late pregnancy exposure to trihalomethanes in drinking water and fetal growth measures and gestational age in a Chinese cohort. Environ Health Perspect 124:536–541; http://dx.doi.org/10.1289/ehp.1409234

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.

          Disinfection by-products (DBPs) are formed when disinfectants (chlorine, ozone, chlorine dioxide, or chloramines) react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. Here we review 30 years of research on the occurrence, genotoxicity, and carcinogenicity of 85 DBPs, 11 of which are currently regulated by the U.S., and 74 of which are considered emerging DBPs due to their moderate occurrence levels and/or toxicological properties. These 74 include halonitromethanes, iodo-acids and other unregulated halo-acids, iodo-trihalomethanes (THMs), and other unregulated halomethanes, halofuranones (MX [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] and brominated MX DBPs), haloamides, haloacetonitriles, tribromopyrrole, aldehydes, and N-nitrosodimethylamine (NDMA) and other nitrosamines. Alternative disinfection practices result in drinking water from which extracted organic material is less mutagenic than extracts of chlorinated water. However, the levels of many emerging DBPs are increased by alternative disinfectants (primarily ozone or chloramines) compared to chlorination, and many emerging DBPs are more genotoxic than some of the regulated DBPs. Our analysis identified three categories of DBPs of particular interest. Category 1 contains eight DBPs with some or all of the toxicologic characteristics of human carcinogens: four regulated (bromodichloromethane, dichloroacetic acid, dibromoacetic acid, and bromate) and four unregulated DBPs (formaldehyde, acetaldehyde, MX, and NDMA). Categories 2 and 3 contain 43 emerging DBPs that are present at moderate levels (sub- to low-mug/L): category 2 contains 29 of these that are genotoxic (including chloral hydrate and chloroacetaldehyde, which are also a rodent carcinogens); category 3 contains the remaining 14 for which little or no toxicological data are available. In general, the brominated DBPs are both more genotoxic and carcinogenic than are chlorinated compounds, and iodinated DBPs were the most genotoxic of all but have not been tested for carcinogenicity. There were toxicological data gaps for even some of the 11 regulated DBPs, as well as for most of the 74 emerging DBPs. A systematic assessment of DBPs for genotoxicity has been performed for approximately 60 DBPs for DNA damage in mammalian cells and 16 for mutagenicity in Salmonella. A recent epidemiologic study found that much of the risk for bladder cancer associated with drinking water was associated with three factors: THM levels, showering/bathing/swimming (i.e., dermal/inhalation exposure), and genotype (having the GSTT1-1 gene). This finding, along with mechanistic studies, highlights the emerging importance of dermal/inhalation exposure to the THMs, or possibly other DBPs, and the role of genotype for risk for drinking-water-associated bladder cancer. More than 50% of the total organic halogen (TOX) formed by chlorination and more than 50% of the assimilable organic carbon (AOC) formed by ozonation has not been identified chemically. The potential interactions among the 600 identified DBPs in the complex mixture of drinking water to which we are exposed by various routes is not reflected in any of the toxicology studies of individual DBPs. The categories of DBPs described here, the identified data gaps, and the emerging role of dermal/inhalation exposure provide guidance for drinking water and public health research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach.

            Observational studies have documented that women take a variety of medications during pregnancy. It is well known that pregnancy can induce changes in the plasma concentrations of some drugs. The use of mechanistic-based approaches to drug interactions has significantly increased our ability to predict clinically significant drug interactions and improve clinical care. This same method can also be used to improve our understanding regarding the effect of pregnancy on pharmacokinetics of drugs. Limited studies suggest bioavailability of drugs is not altered during pregnancy. Increased plasma volume and protein binding changes can alter the apparent volume of distribution (Vd) of drugs. Through changes in Vd and clearance, pregnancy can cause increases or decreases in the terminal elimination half-life of drugs. Depending on whether a drug is excreted unchanged by the kidneys or which metabolic isoenzyme is involved in the metabolism of a drug can determine whether or not a change in dosage is needed during pregnancy. The renal excretion of unchanged drugs is increased during pregnancy. The metabolism of drugs catalysed by select cytochrome P450 (CYP) isoenzymes (i.e. CYP3A4, CYP2D6 and CYP2C9) and uridine diphosphate glucuronosyltransferase (UGT) isoenzymes (i.e. UGT1A4 and UGT2B7) are increased during pregnancy. Dosages of drugs predominantly metabolised by these isoenzymes or excreted by the kidneys unchanged may need to be increased during pregnancy in order to avoid loss of efficacy. In contrast, CYP1A2 and CYP2C19 activity is decreased during pregnancy, suggesting that dosage reductions may be needed to minimise potential toxicity of their substrates. There are limitations to the available data. This analysis is based primarily on observational studies, many including small numbers of women. For some isoenzymes, the effect of pregnancy on only one drug has been evaluated. The full-time course of pharmacokinetic changes during pregnancy is often not studied. The effect of pregnancy on transport proteins is unknown. Drugs eliminated by non-CYP or non-UGT pathways or multiple pathways will need to be evaluated individually. In conclusion, by evaluating the pharmacokinetic data of a variety of drugs during pregnancy and using a mechanistic-based approach, we can start to predict the effect of pregnancy for a large number of clinically used drugs. However, because of the limitations, more clinical, evidence-based studies are needed to fully elucidate the effects of pregnancy on the pharmacokinetics of drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parity and low birth weight and preterm birth: a systematic review and meta-analyses.

              To systematically review the risks of pregnancy outcomes among women of different parity. Electronic databases were searched for studies, in English language, in which primary objective was to assess association between parity and pregnancy outcomes. Meta-analyses were performed and unadjusted odds ratios (ORs) and mean differences along with 95% confidence interval (CI) were calculated. Low birth weight (LBW), preterm birth (PTB), small for gestational age (SGA), birth weight, and gestational age. Forty-one studies, most with moderate risk of bias were included. Nulliparity was associated with increased unadjusted odds of LBW (OR 1.41, 95% CI 1.26, 1.58) and SGA (OR 1.89, 95% CI 1.82, 1.96) and reduction in birth weight (weighted mean difference -282 g, 95% CI -486, -79 g) but not PTB (OR 1.13, 95% CI 0.96, 1.34). Grand multiparity and great grand multiparity were not associated with LBW (OR 1.10, 95% CI 0.95, 1.32 and OR 0.92, 95% CI 0.78, 1.09) or PTB (OR 0.96, 95% CI 0.77, 1.19 and OR 1.32, 95% CI 0.61, 2.83). Nulliparity was associated with a significantly increased unadjusted risk of LBW/SGA birth, whereas grand multiparity and great grand multiparity were not associated with increased risk of pregnancy outcomes.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                18 August 2015
                April 2016
                : 124
                : 4
                : 536-541
                Affiliations
                [1 ]Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
                [2 ]Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
                [3 ]Department of Gynecology and Obstetrics, Wuhan No.1 Hospital, Wuhan, Hubei, PR China
                [4 ]Department of Gynecology and Obstetrics, Xiaonan Maternal and Child Care Service Centre, Xiaogan, Hubei, PR China
                Author notes
                []Address correspondence to W.Q. Lu, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Telephone: 86-27-83610149. E-mail: luwq@ 123456mails.tjmu.edu.cn
                Article
                ehp.1409234
                10.1289/ehp.1409234
                4829983
                26340795
                945ce3b5-f577-4fc8-8b07-ff4d66212e7f

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 18 September 2014
                : 13 August 2015
                Categories
                Children's Health

                Public health
                Public health

                Comments

                Comment on this article