2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The additive effects of obesity on myocardial microcirculation in diabetic individuals: a cardiac magnetic resonance first-pass perfusion study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The microvascular effects of obesity should be considered in diabetic individuals for elucidating underlying mechanisms and developing targeted therapies. This study aims to determine the effect of obesity on myocardial microvascular function in type 2 diabetes mellitus (T2DM) patients using cardiac magnetic resonance (CMR) first-pass perfusion imaging and assessed significant risk factors for microvascular dysfunction.

          Materials and methods

          Between September 2016 and May 2018, 120 patients with T2DM (45.8% women [55 of 120]; mean age, 56.45 ± 11.97 years) and 79 controls (44.3% women [35 of 79]; mean age, 54.50 ± 7.79 years) with different body mass index (BMI) scales were prospectively enrolled and underwent CMR examination. CMR-derived perfusion parameters, including upslope, time to maximum signal intensity (TTM), maximum signal intensity (MaxSI), MaxSI (-baseline), and SI (baseline), and T2DM related risk factors were analyzed among groups/subgroups both in T2DM patients and controls. Univariable and multivariable linear and logistic regression analyses were performed to assess the potential additive effect of obesity on microvascular dysfunction in diabetic individuals.

          Results

          Compared with controls with comparable BMIs, patients with T2DM showed reduced upslope and MaxSI and increased TTM. For both T2DM and control subgroups, perfusion function gradually declined with increasing BMI, which was confirmed by all perfusion parameters, except for TTM (all P < 0.01). In multivariable linear regression analysis, BMI (β = − 0.516; 95% confidence interval [CI], − 0.632 to − 0.357; P < 0.001), female sex (β = 0.372; 95% CI, 0.215 to 0.475; P < 0.001), diabetes duration (β = − 0.169; 95% CI, − 0.319 to − 0.025; P = 0.022) and glycated haemoglobin (β = − 0.184; 95% CI, − 0.281 to − 0.039; P = 0.010) were significantly associated with global upslope in the T2DM group. Multivariable logistic regression analysis indicated that T2DM was an independent predictor of microvascular dysfunction in normal-weight (odds ratio[OR], 6.46; 95% CI, 2.08 to 20.10; P = 0.001), overweight (OR, 7.19; 95% CI, 1.67 to 31.07; P = 0.008) and obese participants (OR, 11.21; 95% CI, 2.38 to 52.75; P = 0.002).

          Conclusions

          Myocardial microvascular function gradually declined with increasing BMI in both diabetes and non-diabetes status. T2DM was associated with an increased risk of microvascular dysfunction, and obesity exacerbated the adverse effect of T2DM.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing

          With mounting data on its accuracy and prognostic value, cardiovascular magnetic resonance (CMR) is becoming an increasingly important diagnostic tool with growing utility in clinical routine. Given its versatility and wide range of quantitative parameters, however, agreement on specific standards for the interpretation and post-processing of CMR studies is required to ensure consistent quality and reproducibility of CMR reports. This document addresses this need by providing consensus recommendations developed by the Task Force for Post Processing of the Society for Cardiovascular MR (SCMR). The aim of the task force is to recommend requirements and standards for image interpretation and post processing enabling qualitative and quantitative evaluation of CMR images. Furthermore, pitfalls of CMR image analysis are discussed where appropriate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials

            Diabetes is defined by its association with hyperglycemia-specific microvascular complications; however, it also imparts a two- to fourfold risk of cardiovascular disease (CVD). Although microvascular complications can lead to significant morbidity and premature mortality, by far the greatest cause of death in people with diabetes is CVD. Results from randomized controlled trials have demonstrated conclusively that the risk of microvascular complications can be reduced by intensive glycemic control in patients with type 1 (1,2) and type 2 diabetes (3–5). In the Diabetes Control and Complications Trial (DCCT), there was an ∼60% reduction in development or progression of diabetic retinopathy, nephropathy, and neuropathy between the intensively treated group (goal A1C 9%) to good control (e.g., A1C <7%). All three trials were carried out in participants with established diabetes (mean duration 8–11 years) and either known CVD or multiple risk factors, suggesting the presence of established atherosclerosis. Subset analyses of the three trials suggested a significant benefit of intensive glycemic control on CVD in participants with shorter duration of diabetes, lower A1C at entry, and/or or absence of known CVD. The finding of the DCCT follow-up study, that intensive glycemic control initiated in relatively young participants free of CVD risk factors was associated with a 57% reduction in major CVD outcomes, supports the above hypothesis. Of note, the benefit on CVD in the DCCT-EDIC (Epidemiology of Diabetes Interventions and Complications) required 9 years of follow-up beyond the end of the DCCT to become statistically significant. A recent report (13) of 10 years of follow-up of the UKPDS cohort describes, for the participants originally randomized to intensive glycemic control compared with those randomized to conventional glycemic control, long-term reductions in MI (15% with sulfonylurea or insulin as initial pharmacotherapy and 33% with metformin as initial pharmacotherapy, both statistically significant) and in all-cause mortality (13 and 27%, respectively, both statistically significant). These findings support the hypothesis that glycemic control early in the course of type 2 diabetes may have CVD benefit. As is the case with microvascular complications, it may be that glycemic control plays a greater role before macrovascular disease is well developed and a minimal or no role when it is advanced. People with type 1 diabetes, in whom insulin resistance does not predominate, tend to have lower rates of coexisting obesity, hypertension, and dyslipidemia than those with type 2 diabetes and yet are also at high lifetime risk of CVD (14). It is possible that CVD is more strongly glycemia mediated in type 1 diabetes and that intervening on glycemia would ameliorate CVD to a greater extent in type 1 than in type 2 diabetes. Finally, the inability of ACCORD, ADVANCE, and VADT to demonstrate significant reduction of CVD with intensive glycemic control could also suggest that current strategies for treating hyperglycemia in patients with more advanced type 2 diabetes may have counter-balancing consequences for CVD (such as hypoglycemia, weight gain, or other metabolic changes). Results of long-term CVD outcome trials utilizing specific antihyperglycemic drugs, intensive lifestyle therapy (such as the Look AHEAD [Action for Health in Diabetes] study), bariatric surgery, or other emerging therapies may shed light on this issue. 4. What are the implications of these findings for clinical care? The benefits of intensive glycemic control on microvascular and neuropathic complications are well established for both type 1 and type 2 diabetes. The ADVANCE trial has added to that evidence base by demonstrating a significant reduction in the risk of new or worsening albuminuria when median A1C was lowered to 6.3% compared with standard glycemic control achieving an A1C of 7.0%. The lack of significant reduction in CVD events with intensive glycemic control in ACCORD, ADVANCE, and VADT should not lead clinicians to abandon the general target of an A1C <7.0% and thereby discount the benefit of good control on serious and debilitating microvascular complications. The ADA's Standards of Medical Care in Diabetes (6) and the AHA and ADA's scientific statement on prevention (15) advocate controlling nonglycemic risk factors (through blood pressure control, lipid lowering with statin therapy, aspirin therapy, and lifestyle modifications) as the primary strategies for reducing the burden of CVD in people with diabetes. The lower-than-predicted CVD rates in ACCORD, ADVANCE, and VADT, as well as the recent long-term follow-up of the Steno-2 multiple risk factor intervention (16), provide strong confirmation of the concept that comprehensive care for diabetes involves treatment of all vascular risk factors—not just hyperglycemia. The evidence for a cardiovascular benefit of intensive glycemic control remains strongest for those with type 1 diabetes. However, subset analyses of ACCORD, ADVANCE, and VADT suggest the hypothesis that patients with shorter duration of type 2 diabetes and without established atherosclerosis might reap cardiovascular benefit from intensive glycemic control. Conversely, it is possible that potential risks of intensive glycemic control may outweigh its benefits in other patients, such as those with a very long duration of diabetes, known history of severe hypoglycemia, advanced atherosclerosis, and advanced age/frailty. Certainly, providers should be vigilant in preventing severe hypoglycemia in patients with advanced disease and should not aggressively attempt to achieve near-normal A1C levels in patients in whom such a target cannot be reasonably easily and safely achieved. The evidence obtained from ACCORD, ADVANCE, and VADT does not suggest the need for major changes in glycemic control targets but, rather, additional clarification of the language that has consistently stressed individualization: Microvascular disease: Lowering A1C to below or around 7% has been shown to reduce microvascular and neuropathic complications of type 1 and type 2 diabetes. Therefore, the A1C goal for nonpregnant adults in general is <7%. ADA, A-level recommendation; ACC/AHA, class I recommendation (level of evidence A). Macrovascular disease: In type 1 and type 2 diabetes, randomized controlled trials of intensive versus standard glycemic control have not shown a significant reduction in CVD outcomes during the randomized portion of the trials. However, long-term follow-up of the DCCT and UKPDS cohorts suggests that treatment to A1C targets below or around 7% in the years soon after the diagnosis of diabetes is associated with long-term reduction in risk of macrovascular disease. Until more evidence becomes available, the general goal of <7% appears reasonable. ADA, B-level recommendation; ACC/AHA, class IIb recommendation (level of evidence A). For some patients, individualized glycemic targets other than the above general goal may be appropriate: Subgroup analyses of clinical trials such as the DCCT and UKPDS and the microvascular evidence from the ADVANCE trial suggest a small but incremental benefit in microvascular outcomes with A1C values closer to normal. Therefore, for selected individual patients, providers might reasonably suggest even lower A1C goals than the general goal of <7% if this can be achieved without significant hypoglycemia or other adverse effects of treatment. Such patients might include those with short duration of diabetes, long life expectancy, and no significant cardiovascular disease. ADA, B-level recommendation; ACC/AHA, class IIa recommendation (level of evidence C). Conversely, less stringent A1C goals than the general goal of <7% may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced microvascular or macrovascular complications, or extensive comorbid conditions or those with long-standing diabetes in whom the general goal is difficult to attain despite diabetes self-management education, appropriate glucose monitoring, and effective doses of multiple glucose-lowering agents including insulin. ADA, C-level recommendation; ACC/AHA, class IIa recommendation (level of evidence C). For primary and secondary CVD risk reduction in patients with diabetes, providers should continue to follow the evidence-based recommendations for blood pressure treatment, including lipid-lowering with statins, aspirin prophylaxis, smoking cessation, and healthy lifestyle behaviors delineated in the ADA Standards of Medical Care in Diabetes (6) and the AHA/ADA guidelines for primary CVD prevention (15).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coronary microvascular dysfunction: mechanisms and functional assessment.

              Obstructive disease of the epicardial coronary arteries was recognized as the cause of angina pectoris >2 centuries ago, and sudden thrombotic occlusion of an epicardial coronary artery has been established as the cause of acute myocardial infarction for >100 years. In the past 2 decades, dysfunction of the coronary microvasculature emerged as an additional mechanism of myocardial ischaemia that bears important prognostic implications. The coronary microvasculature (vessels <300 μm in diameter) cannot be directly imaged in vivo, but a number of invasive and noninvasive techniques, each with relative advantages and pitfalls, can be used to assess parameters that depend directly on coronary microvascular function. These methods include invasive or noninvasive measurement of Doppler-derived coronary blood flow velocity reserve, assessment of myocardial blood flow and flow reserve using noninvasive imaging, and calculation of microcirculatory resistance indexes during coronary catheterization. These advanced techniques for assessment of the coronary microvasculature have provided novel insights into the pathophysiological role of coronary microvascular dysfunction in the development of myocardial ischaemia in different clinical conditions.
                Bookmark

                Author and article information

                Contributors
                yangzg666@163.com
                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central (London )
                1475-2840
                6 May 2020
                6 May 2020
                2020
                : 19
                : 52
                Affiliations
                [1 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Department of Radiology, West China Hospital, , Sichuan University, ; 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
                [2 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, , Sichuan University, ; 20# South Renmin Road, Chengdu, Sichuan 610041 China
                [3 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Department of Endocrinology and Metabolism, West China Hospital, , Sichuan University, ; 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
                Author information
                http://orcid.org/0000-0001-9341-7697
                Article
                1028
                10.1186/s12933-020-01028-1
                7201945
                32375795
                945d2ff9-f7fa-4e7b-ac1a-586a853df092
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 7 February 2020
                : 25 April 2020
                Funding
                Funded by: 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University
                Award ID: ZYGD18013
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81471722
                Award ID: 81771887
                Award ID: 81471721
                Award ID: 81771897
                Award Recipient :
                Categories
                Original Investigation
                Custom metadata
                © The Author(s) 2020

                Endocrinology & Diabetes
                body mass index,cardiac magnetic resonance first-pass perfusion imaging,myocardial microvascular function,obesity,type 2 diabetes mellitus

                Comments

                Comment on this article