111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Mechanisms of Vesicle Budding and Fusion

      ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Signals for sorting of transmembrane proteins to endosomes and lysosomes.

          Sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present within the cytosolic domains of the proteins. Most signals consist of short, linear sequences of amino acid residues. Some signals are referred to as tyrosine-based sorting signals and conform to the NPXY or YXXO consensus motifs. Other signals known as dileucine-based signals fit [DE]XXXL[LI] or DXXLL consensus motifs. All of these signals are recognized by components of protein coats peripherally associated with the cytosolic face of membranes. YXXO and [DE]XXXL[LI] signals are recognized with characteristic fine specificity by the adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4, whereas DXXLL signals are recognized by another family of adaptors known as GGAs. Several proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition proteins for NPXY signals. YXXO and DXXLL signals bind in an extended conformation to the mu2 subunit of AP-2 and the VHS domain of the GGAs, respectively. Phosphorylation events regulate signal recognition. In addition to peptide motifs, ubiquitination of cytosolic lysine residues also serves as a signal for sorting at various stages of the endosomal-lysosomal system. Conjugated ubiquitin is recognized by UIM, UBA, or UBC domains present within many components of the internalization and lysosomal targeting machinery. This complex array of signals and recognition proteins ensures the dynamic but accurate distribution of transmembrane proteins to different compartments of the endosomal-lysosomal system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of intracellular protein transport.

            Recent advances have uncovered the general protein apparatus used by all eukaryotes for intracellular transport, including secretion and endocytosis, and for triggered exocytosis of hormones and neurotransmitters. Membranes are shaped into vesicles by cytoplasmic coats which then dissociate upon GTP hydrolysis. Both vesicles and their acceptor membranes carry targeting proteins which interact specifically to initiate docking. A general apparatus then assembles at the docking site and fuses the vesicle with its target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum.

              In vitro synthesis of endoplasmic reticulum-derived transport vesicles has been reconstituted with washed membranes and three soluble proteins (Sar1p, Sec13p complex, and Sec23p complex). Vesicle formation requires GTP but can be driven by nonhydrolyzable analogs such as GMP-PNP. However, GMP-PNP vesicles fail to target and fuse with the Golgi complex whereas GTP vesicles are functional. All the cytosolic proteins required for vesicle formation are retained on GMP-PNP vesicles, while Sar1p dissociates from GTP vesicles. Thin section electron microscopy of purified preparations reveals a uniform population of 60-65 nm vesicles with a 10 nm thick electron dense coat. The subunits of this novel coat complex are molecularly distinct from the constituents of the nonclathrin coatomer involved in intra-Golgi transport. Because the overall cycle of budding driven by these two types of coats appears mechanistically similar, we propose that the coat structures be called COPI and COPII.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                January 2004
                January 2004
                : 116
                : 2
                : 153-166
                Article
                10.1016/S0092-8674(03)01079-1
                14744428
                945d7d52-29f2-44a4-9f95-03cf32c6d130
                © 2004

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article