66
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Routine childhood immunisation during the COVID-19 pandemic in Africa: a benefit–risk analysis of health benefits versus excess risk of SARS-CoV-2 infection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          National immunisation programmes globally are at risk of suspension due to the severe health system constraints and physical distancing measures in place to mitigate the ongoing COVID-19 pandemic. We aimed to compare the health benefits of sustaining routine childhood immunisation in Africa with the risk of acquiring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through visiting routine vaccination service delivery points.

          Methods

          We considered a high-impact scenario and a low-impact scenario to approximate the child deaths that could be caused by immunisation coverage reductions during COVID-19 outbreaks. In the high-impact scenario, we used previously reported country-specific child mortality impact estimates of childhood immunisation for diphtheria, tetanus, pertussis, hepatitis B, Haemophilus influenzae type b, Streptococcus pneumoniae, rotavirus, measles, meningitis A, rubella, and yellow fever to approximate the future deaths averted before 5 years of age by routine childhood vaccination during a 6-month COVID-19 risk period without catch-up campaigns. In the low-impact scenario, we approximated the health benefits of sustaining routine childhood immunisation on only the child deaths averted from measles outbreaks during the COVID-19 risk period. We assumed that contact-reducing interventions flattened the outbreak curve during the COVID-19 risk period, that 60% of the population will have been infected by the end of that period, that children can be infected by either vaccinators or during transport, and that upon child infection the whole household will be infected. Country-specific household age structure estimates and age-dependent infection-fatality rates were applied to calculate the number of deaths attributable to the vaccination clinic visits. We present benefit–risk ratios for routine childhood immunisation, with 95% uncertainty intervals (UIs) from a probabilistic sensitivity analysis.

          Findings

          In the high-impact scenario, for every one excess COVID-19 death attributable to SARS-CoV-2 infections acquired during routine vaccination clinic visits, 84 (95% UI 14–267) deaths in children could be prevented by sustaining routine childhood immunisation in Africa. The benefit–risk ratio for the vaccinated children is 85 000 (4900–546 000), for their siblings (<20 years) is 75 000 (4400–483 000), for their parents or adult carers (aged 20–60 years) is 769 (148–2700), and for older adults (>60 years) is 96 (14–307). In the low-impact scenario that approximates the health benefits to only the child deaths averted from measles outbreaks, the benefit–risk ratio to the households of vaccinated children is 3 (0–10); if the risk to only the vaccinated children is considered, the benefit–risk ratio is 3000 (182–21 000).

          Interpretation

          The deaths prevented by sustaining routine childhood immunisation in Africa outweigh the excess risk of COVID-19 deaths associated with vaccination clinic visits, especially for the vaccinated children. Routine childhood immunisation should be sustained in Africa as much as possible, while considering other factors such as logistical constraints, staff shortages, and reallocation of resources during the COVID-19 pandemic.

          Funding

          Gavi, the Vaccine Alliance; Bill & Melinda Gates Foundation.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimates of the severity of coronavirus disease 2019: a model-based analysis

            Summary Background In the face of rapidly changing data, a range of case fatality ratio estimates for coronavirus disease 2019 (COVID-19) have been produced that differ substantially in magnitude. We aimed to provide robust estimates, accounting for censoring and ascertainment biases. Methods We collected individual-case data for patients who died from COVID-19 in Hubei, mainland China (reported by national and provincial health commissions to Feb 8, 2020), and for cases outside of mainland China (from government or ministry of health websites and media reports for 37 countries, as well as Hong Kong and Macau, until Feb 25, 2020). These individual-case data were used to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the case fatality ratio by relating the aggregate distribution of cases to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for demography and age-based and location-based under-ascertainment. We also estimated the case fatality ratio from individual line-list data on 1334 cases identified outside of mainland China. Using data on the prevalence of PCR-confirmed cases in international residents repatriated from China, we obtained age-stratified estimates of the infection fatality ratio. Furthermore, data on age-stratified severity in a subset of 3665 cases from China were used to estimate the proportion of infected individuals who are likely to require hospitalisation. Findings Using data on 24 deaths that occurred in mainland China and 165 recoveries outside of China, we estimated the mean duration from onset of symptoms to death to be 17·8 days (95% credible interval [CrI] 16·9–19·2) and to hospital discharge to be 24·7 days (22·9–28·1). In all laboratory confirmed and clinically diagnosed cases from mainland China (n=70 117), we estimated a crude case fatality ratio (adjusted for censoring) of 3·67% (95% CrI 3·56–3·80). However, after further adjusting for demography and under-ascertainment, we obtained a best estimate of the case fatality ratio in China of 1·38% (1·23–1·53), with substantially higher ratios in older age groups (0·32% [0·27–0·38] in those aged <60 years vs 6·4% [5·7–7·2] in those aged ≥60 years), up to 13·4% (11·2–15·9) in those aged 80 years or older. Estimates of case fatality ratio from international cases stratified by age were consistent with those from China (parametric estimate 1·4% [0·4–3·5] in those aged <60 years [n=360] and 4·5% [1·8–11·1] in those aged ≥60 years [n=151]). Our estimated overall infection fatality ratio for China was 0·66% (0·39–1·33), with an increasing profile with age. Similarly, estimates of the proportion of infected individuals likely to be hospitalised increased with age up to a maximum of 18·4% (11·0–7·6) in those aged 80 years or older. Interpretation These early estimates give an indication of the fatality ratio across the spectrum of COVID-19 disease and show a strong age gradient in risk of death. Funding UK Medical Research Council.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: a modelling study

              Summary Background While the COVID-19 pandemic will increase mortality due to the virus, it is also likely to increase mortality indirectly. In this study, we estimate the additional maternal and under-5 child deaths resulting from the potential disruption of health systems and decreased access to food. Methods We modelled three scenarios in which the coverage of essential maternal and child health interventions is reduced by 9·8–51·9% and the prevalence of wasting is increased by 10–50%. Although our scenarios are hypothetical, we sought to reflect real-world possibilities, given emerging reports of the supply-side and demand-side effects of the pandemic. We used the Lives Saved Tool to estimate the additional maternal and under-5 child deaths under each scenario, in 118 low-income and middle-income countries. We estimated additional deaths for a single month and extrapolated for 3 months, 6 months, and 12 months. Findings Our least severe scenario (coverage reductions of 9·8–18·5% and wasting increase of 10%) over 6 months would result in 253 500 additional child deaths and 12 200 additional maternal deaths. Our most severe scenario (coverage reductions of 39·3–51·9% and wasting increase of 50%) over 6 months would result in 1 157 000 additional child deaths and 56 700 additional maternal deaths. These additional deaths would represent an increase of 9·8–44·7% in under-5 child deaths per month, and an 8·3–38·6% increase in maternal deaths per month, across the 118 countries. Across our three scenarios, the reduced coverage of four childbirth interventions (parenteral administration of uterotonics, antibiotics, and anticonvulsants, and clean birth environments) would account for approximately 60% of additional maternal deaths. The increase in wasting prevalence would account for 18–23% of additional child deaths and reduced coverage of antibiotics for pneumonia and neonatal sepsis and of oral rehydration solution for diarrhoea would together account for around 41% of additional child deaths. Interpretation Our estimates are based on tentative assumptions and represent a wide range of outcomes. Nonetheless, they show that, if routine health care is disrupted and access to food is decreased (as a result of unavoidable shocks, health system collapse, or intentional choices made in responding to the pandemic), the increase in child and maternal deaths will be devastating. We hope these numbers add context as policy makers establish guidelines and allocate resources in the days and months to come. Funding Bill & Melinda Gates Foundation, Global Affairs Canada.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Glob Health
                Lancet Glob Health
                The Lancet. Global Health
                The Author(s). Published by Elsevier Ltd.
                2214-109X
                17 July 2020
                17 July 2020
                Affiliations
                [a ]London School of Hygiene & Tropical Medicine, London, UK
                [b ]Gavi, the Vaccine Alliance, Geneva, Switzerland
                [c ]Bill & Melinda Gates Foundation, Seattle, WA, USA
                [d ]Public Health England, London, UK
                [e ]University of Hong Kong, Hong Kong Special Administrative Region, China
                Author notes
                [* ]Correspondence to: Dr Kaja Abbas, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK kaja.abbas@ 123456lshtm.ac.uk
                [*]

                Contributed equally

                [†]

                Members of the LSHTM CMMID COVID-19 Working Group are listed at the end of the Article

                Article
                S2214-109X(20)30308-9
                10.1016/S2214-109X(20)30308-9
                7367673
                32687792
                945ea935-e243-454a-9930-282727784da7
                © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Comments

                Comment on this article

                scite_

                Similar content106

                Cited by163

                Most referenced authors1,595