22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anti-Cancer Therapies of 21st Century: Novel Approach to Treat Human Cancers Using Cold Atmospheric Plasma : Anti-Cancer Therapies of 21st Century …

      , , , , , ,
      Plasma Processes and Polymers
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxynitrite: biochemistry, pathophysiology and development of therapeutics.

          Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

            The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy

              Background: Plasma is an ionised gas that is typically generated in high-temperature laboratory conditions. However, recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. Methods: Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. Results: We show that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells; and (b) significantly reduces tumour size in vivo. It is shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. Conclusion: The development of cold plasma tumour ablation has the potential of shifting the current paradigm of cancer treatment and enabling the transformation of cancer treatment technologies by utilisation of another state of matter.
                Bookmark

                Author and article information

                Journal
                Plasma Processes and Polymers
                Plasma Process. Polym.
                Wiley-Blackwell
                16128850
                December 2014
                December 2014
                : 11
                : 12
                : 1128-1137
                Article
                10.1002/ppap.201400071
                9460939a-1184-41b8-a8e8-e5b2f98ca4a2
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article