18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Gliomas are the most aggressive and common primary tumors of the central nervous system (CNS). Many side effects of drugs containing platinum and their poor penetration of the CNS are major drawbacks in glioma therapy. The aim of the study was to investigate and compare the toxicity of platinum nanoparticles and cisplatin and their anticancer properties in examination with a U87 glioma cell line and tumor.

          Material and methods

          Nanoparticles of platinum (NP-Pt) and cisplatin were incubated with U87 glioma cells or injected directly into tumor tissue. The biological properties of NP-Pt and cisplatin were compared through the morphology, viability, mortality, genotoxicity and the type of cell death of U87 glioma cells, the morphology and ultrastructure of glioma tumor, and expression of caspase-3, p53 and PCNA mRNA.

          Results

          NP-Pt at concentrations of 0.14 µM/ml, 0.29 µM/ml and 0.65 µM/ml had a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure and morphology of tumor tissue, but they also upregulated p53 and caspase-3 mRNA expression.

          Conclusions

          The comparison between the effectiveness of glioblastoma treatment by NP-Pt vs cisplatin showed promising results for future studies. The results indicate that the properties of NP-Pt might be utilized for brain cancer therapy.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

          Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platinum nanoparticles: a promising material for future cancer therapy?

            Recently, the use of gold nanoparticles as potential tumor selective radiosensitizers has been proposed as a breakthrough in radiotherapy. Experiments in living cells and in vivo have demonstrated the efficiency of the metal nanoparticles when combined with low energy x-ray radiations (below conventional 1 MeV Linac radiation). Further studies on DNA have been performed in order to better understand the fundamental processes of sensitization and to further improve the method. In this work, we propose a new strategy based on the combination of platinum nanoparticles with irradiation by fast ions effectively used in hadron therapy. It is observed in particular that nanoparticles enhance strongly lethal damage in DNA, with an efficiency factor close to 2 for double strand breaks. In order to disentangle the effect of the nano-design architecture, a comparison with the effects of dispersed metal atoms at the same concentration has been performed. It is thus shown that the sensitization in nanoparticles is enhanced due to auto-amplified electronic cascades inside the nanoparticles, which reinforces the energy deposition in the close vicinity of the metal. Finally, the combination of fast ion radiation (hadron therapy) with platinum nanoparticles should strongly improve cancer therapy protocols.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cross-platform public domain PC image-analysis program for the comet assay.

              The single-cell gel electrophoresis, also known as the comet assay, has gained wide-spread popularity as a simple and reliable method to measure genotoxic and cytotoxic effects of physical and chemical agents as well as kinetics of DNA repair. Cells are generally stained with fluorescent dyes. The analysis of comets--damaged cells which form a typical comet-shaped pattern--is greatly facilitated by the use of a computer image-analysis program. Although several image-analysis programs are available commercially, they are expensive and their source codes are not provided. For Macintosh computers a cost-free public domain macro is available on the Internet. No ready for use, cost-free program exists for the PC platform. We have, therefore, developed such a public domain program under the GNU license for PC computers. The program is called CASP and can be run on a variety of hardware and software platforms. Its practical merit was tested on human lymphocytes exposed to gamma-rays and found to yield reproducible results. The binaries for Windows 95 and Linux, together with the source code can be obtained from: http://www.casp.of.pl.
                Bookmark

                Author and article information

                Journal
                Arch Med Sci
                Arch Med Sci
                AMS
                Archives of Medical Science : AMS
                Termedia Publishing House
                1734-1922
                1896-9151
                31 March 2016
                October 2017
                : 13
                : 6
                : 1322-1334
                Affiliations
                [1 ]Department of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
                [2 ]Division of Biotechnology and Biochemistry of Nutrition, Faculty of Animal Science, Warsaw University of Life Science, Warsaw, Poland
                [3 ]Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
                [4 ]Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
                Author notes
                Corresponding author: Marta Kutwin MS, Department of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego St, 02-786 Warsaw, Poland. Phone: + 48 662 188 662. E-mail: marta_kutwin@ 123456sggw.pl
                Article
                27236
                10.5114/aoms.2016.58925
                5701677
                29181062
                9479a657-8f24-4114-9c44-34a8d58297c8
                Copyright: © 2016 Termedia & Banach

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.

                History
                : 16 July 2015
                : 30 September 2016
                Categories
                Basic Research

                Medicine
                platinum nanoparticles,u87,glioblastoma,genotoxicity,apoptosis,cancer
                Medicine
                platinum nanoparticles, u87, glioblastoma, genotoxicity, apoptosis, cancer

                Comments

                Comment on this article