36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Inertial microfluidics.

          Despite the common wisdom that inertia does not contribute to microfluidic phenomena, recent work has shown a variety of useful effects that depend on fluid inertia for applications in enhanced mixing, particle separation, and bioparticle focusing. Due to the robust, fault-tolerant physical effects employed and high rates of operation, inertial microfluidic systems are poised to have a critical impact on high-throughput separation applications in environmental cleanup and physiological fluids processing, as well as bioparticle focusing applications in clinical diagnostics. In this review I will discuss the recent accelerated progress in developing prototype inertial microfluidic systems for a variety of applications and attempt to clarify the fundamental fluid dynamic effects that are being exploited. Finally, since this a nascent area of research, I will suggest some future promising directions exploiting fluid inertia on the microscale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer

            The increasing number of treatment options for patients with metastatic carcinomas has created a concomitant need for new methods to monitor their use. Ideally, these modalities would be noninvasive, be independent of treatment, and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells (CTCs) shed into the blood during metastasis may satisfy this need. We developed the CellSearch System to enumerate CTC from 7.5 mL of venous blood. In this review we compare the outcomes from three prospective multicenter studies investigating the use of CTC to monitor patients undergoing treatment for metastatic breast (MBC), colorectal (MCRC), or prostate cancer (MPC) and review the CTC definition used in these studies. Evaluation of CTC at anytime during the course of disease allows assessment of patient prognosis and is predictive of overall survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Isolation and retrieval of circulating tumor cells using centrifugal forces

              Presence and frequency of rare circulating tumor cells (CTCs) in bloodstreams of cancer patients are pivotal to early cancer detection and treatment monitoring. Here, we use a spiral microchannel with inherent centrifugal forces for continuous, size-based separation of CTCs from blood (Dean Flow Fractionation (DFF)) which facilitates easy coupling with conventional downstream biological assays. Device performance was optimized using cancer cell lines (> 85% recovery), followed by clinical validation with positive CTCs enumeration in all samples from patients with metastatic lung cancer (n = 20; 5–88 CTCs per mL). The presence of CD133+ cells, a phenotypic marker characteristic of stem-like behavior in lung cancer cells was also identified in the isolated subpopulation of CTCs. The spiral biochip identifies and addresses key challenges of the next generation CTCs isolation assay including antibody independent isolation, high sensitivity and throughput (3 mL/hr); and single-step retrieval of viable CTCs.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                15 March 2016
                6 February 2016
                : 7
                : 11
                : 12748-12760
                Affiliations
                1 Department of Bioengineering, University of California, Los Angeles, California, USA
                2 Vortex Biosciences, Menlo Park, California, USA
                3 Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
                4 Department of Hematology & Oncology, UCLA Medical Center, Los Angeles, California, USA
                5 Department of Pathology & Laboratory Medicine, UCLA Medical Center, Los Angeles, California, USA
                6 Stanford Women's Cancer Center, Stanford, California, USA
                7 Division of Dermatology, UCLA Medical Center, Los Angeles, California, USA
                8 California NanoSystems Institue, Los Angeles, California, USA
                9 Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
                Author notes
                Correspondence to: Dino Di Carlo, dicarlo@ 123456seas.ucla.edu
                Article
                7220
                10.18632/oncotarget.7220
                4914319
                26863573
                9487d755-c4d3-446c-8160-32785612858c
                Copyright: © 2016 Che et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 January 2016
                : 21 January 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                circulating tumor cells,immunofluorescent staining,rare cell enrichment,size based cell isolation,vortex

                Comments

                Comment on this article