Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash.

      Proceedings of the National Academy of Sciences of the United States of America

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Redox-controlled phosphorylation of thylakoid membrane proteins represents a unique system for the regulation of light energy utilization in photosynthesis. The molecular mechanisms for this process remain unknown, but current views suggest that the plastoquinone pool directly controls the activation of the kinase. On the basis of enzyme activation by a pH shift in the darkness combined with flash photolysis, EPR, and optical spectroscopy we propose that activation occurs when plastoquinol occupies the quinol-oxidation (Qo) site of the cytochrome bf complex, having its high-potential path components in a reduced state. A linear correlation between kinase activation and accessibility of the Qo site to plastoquinol was established by quantification of the shift in the g(y) EPR signal of the Rieske Fe-S center resulting from displacement of the Qo-site plastoquinol by a quinone analog. Activity persists as long as one plastoquinol per cytochrome bf is still available. Withdrawal of one electron from this plastoquinol after a single-turnover flash exciting photosystem I leads to deactivation of the kinase parallel with a decrease in the g(z) EPR signal of the reduced Rieske Fe-S center. Cytochrome f, plastocyanin, and P(700) are rereduced after the flash, indicating that the plastoquinol at the Qo site is limiting in maintaining the kinase activity. These results give direct evidence for a functional cytochrome bf-kinase interaction, analogous to a signal transduction system where the cytochrome bf is the receptor and the ligand is the plastoquinol at the Qo site.

          Related collections

          Author and article information

          Journal
          11038603
          19835

          Comments

          Comment on this article