56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Active tactile sampling by an insect in a step-climbing paradigm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many insects actively explore their near-range environment with their antennae. Stick insects ( Carausius morosus) rhythmically move their antennae during walking and respond to antennal touch by repetitive tactile sampling of the object. Despite its relevance for spatial orientation, neither the spatial sampling patterns nor the kinematics of antennation behavior in insects are understood. Here we investigate unrestrained bilateral sampling movements during climbing of steps. The main objectives are: (1) How does the antennal contact pattern relate to particular object features? (2) How are the antennal joints coordinated during bilateral tactile sampling? We conducted motion capture experiments on freely climbing insects, using steps of different height. Tactile sampling was analyzed at the level of antennal joint angles. Moreover, we analyzed contact patterns on the surfaces of both the obstacle and the antenna itself. Before the first contact, both antennae move in a broad, mostly elliptical exploratory pattern. After touching the obstacle, the pattern switches to a narrower and faster movement, caused by higher cycle frequencies and lower cycle amplitudes in all joints. Contact events were divided into wall- and edge-contacts. Wall contacts occurred mostly with the distal third of the flagellum, which is flexible, whereas edge contacts often occurred proximally, where the flagellum is stiff. The movement of both antennae was found to be coordinated, exhibiting bilateral coupling of functionally analogous joints [e.g., left head-scape (HS) joint with right scape-pedicel (SP) joint] throughout tactile sampling. In comparison, bilateral coupling between homologous joints (e.g., both HS joints) was significantly weaker. Moreover, inter-joint coupling was significantly weaker during the contact episode than before. In summary, stick insects show contact-induced changes in frequency, amplitude and inter-joint coordination during tactile sampling of climbed obstacles.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Honey bees as a model for vision, perception, and cognition.

          Among the so-called simpler organisms, the honey bee is one of the few examples of an animal with a highly evolved social structure, a rich behavioral repertoire, an exquisite navigational system, an elaborate communication system, and an extraordinary ability to learn colors, shapes, fragrances, and navigational routes quickly and accurately. This review examines vision and complex visually mediated behavior in the honey bee, outlining the structure and function of the compound eyes, the perception and discrimination of colors and shapes, the learning of complex tasks, the ability to establish and exploit complex associations, and the capacity to abstract general principles from a task and apply them to tackle novel situations. All this is accomplished by a brain that weighs less than a milligram and carries fewer than a million neurons, thus making the bee a promising subject in which to study a variety of fundamental questions about behavior and brain function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control.

            The rhythmic motor activity of the vibrissae that rodents use for the tactile localization of objects provides a model system for understanding patterned motor activity in mammals. The muscles that drive this whisking are only partially fixed relative to bony attachments and thus shift their position along with the movement. As a means to characterize the pattern of muscular dynamics during different patterns of whisking, we recorded electromyogram (EMG) activity from the muscles that propel individual follicles, as well as EMG activity from a muscle group that moves the mystacial pad. The dominant pattern of whisking in our behavioral paradigm, referred to as exploratory whisking, consisted of large amplitude sweeps in the frequency range of 5-15 Hz. The frequency remained remarkably constant within a bout of whisking but changed values between bouts. The extrinsic musculature, which shifts the surface of the pad backwards, was found to be activated in approximate antiphase to that of the intrinsic muscles, which rotate individual vibrissae forward. Thus retraction of the vibrissae was driven by a backward shift in the attachment point of the follicles to the mystacial pad. In a less frequent pattern of whisking, referred to as foveal whisking, the vibrissae are thrust forward and palpate objects with low-amplitude movements that are in the higher frequency range of 15-25 Hz. Protraction of the vibrissae remains driven by the intrinsic muscles, while retraction in this pattern is largely passive. Interestingly, a mechanical argument suggests that activation of the extrinsic muscles during foveal whisking is not expected to affect the angle of the vibrissae. As a means to establish if the phasic control of the intrinsic versus extrinsic muscles depended on sensory feedback, we characterized whisking before and after bilateral transections of the infraorbital branch of the trigeminal sensory nerve. The loss of sensory feedback had no net effect on the antiphase relation between activation of the intrinsic versus extrinsic muscles over the full frequency range for exploratory whisking. These data point to the existence of a dual-phase central pattern generator that drives the vibrissae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact.

              Rats sweep their facial whiskers back and forth to generate tactile sensory information through contact with environmental structure. The neural processes operating on the signals arising from these whisker contacts are widely studied as a model of sensing in general, even though detailed knowledge of the natural circumstances under which such signals are generated is lacking. We used digital video tracking and wireless recording of mystacial electromyogram signals to assess the effects of whisker-object contact on whisking in freely moving animals exploring simple environments. Our results show that contact leads to reduced protraction (forward whisker motion) on the side of the animal ipsilateral to an obstruction and increased protraction on the contralateral side. Reduced ipsilateral protraction occurs rapidly and in the same whisk cycle as the initial contact. We conclude that whisker movements are actively controlled so as to increase the likelihood of environmental contacts while constraining such interactions to involve a gentle touch. That whisking pattern generation is under strong feedback control has important implications for understanding the nature of the signals reaching upstream neural processes.
                Bookmark

                Author and article information

                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                28 June 2012
                2012
                : 6
                : 30
                Affiliations
                [1] 1simpleCognitive Interaction Technology – Centre of Excellence, Universität Bielefeld Bielefeld, Germany
                [2] 2simpleFakultät für Biologie, Lehrstuhl für Biologische Kybernetik, Universität Bielefeld Bielefeld, Germany
                Author notes

                Edited by: Pavel M. Itskov, Champalimaud Foundation, Portugal

                Reviewed by: Jeremy E. Niven, University of Sussex, UK; Jiro Okada, Nagasaki University, Japan

                *Correspondence: Volker Dürr, Fakultät für Biologie, Lehrstuhl für Biologische Kybernetik, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany. e-mail: volker.duerr@ 123456uni-bielefeld.de
                Article
                10.3389/fnbeh.2012.00030
                3384986
                22754513
                94a62ad7-6eca-4695-9e1d-6f25317be8bf
                Copyright © 2012 Krause and Dürr.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 28 March 2012
                : 01 June 2012
                Page count
                Figures: 10, Tables: 2, Equations: 0, References: 47, Pages: 17, Words: 10617
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                inter-joint coordination,active touch,stick insect,insect antenna,carausius,climbing,tactile sense

                Comments

                Comment on this article