43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rab11 Regulates the Compartmentalization of Early Endosomes Required for Efficient Transport from Early Endosomes to the Trans-Golgi Network

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20°C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct Membrane Domains on Endosomes in the Recycling Pathway Visualized by Multicolor Imaging of Rab4, Rab5, and Rab11

          Two endosome populations involved in recycling of membranes and receptors to the plasma membrane have been described, the early and the recycling endosome. However, this distinction is mainly based on the flow of cargo molecules and the spatial distribution of these membranes within the cell. To get insights into the membrane organization of the recycling pathway, we have studied Rab4, Rab5, and Rab11, three regulatory components of the transport machinery. Following transferrin as cargo molecule and GFP-tagged Rab proteins we could show that cargo moves through distinct domains on endosomes. These domains are occupied by different Rab proteins, revealing compartmentalization within the same continuous membrane. Endosomes are comprised of multiple combinations of Rab4, Rab5, and Rab11 domains that are dynamic but do not significantly intermix over time. Three major populations were observed: one that contains only Rab5, a second with Rab4 and Rab5, and a third containing Rab4 and Rab11. These membrane domains display differential pharmacological sensitivity, reflecting their biochemical and functional diversity. We propose that endosomes are organized as a mosaic of different Rab domains created through the recruitment of specific effector proteins, which cooperatively act to generate a restricted environment on the membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments.

            A set of 11 clones encoding putative GTP binding proteins highly homologous to the yeast YPT1/SEC4 gene products have been isolated from an MDCK cell cDNA library. We localized three of the corresponding proteins in mammalian cells by using affinity-purified antibodies in immunofluorescence and immunoelectron microscopy studies. One, the MDCK homolog of rab2, is associated with a structure having the characteristics of an intermediate compartment between the endoplasmic reticulum and the Golgi apparatus. The second, rab5, is located at the cytoplasmic surface of the plasma membrane and on early endosomes, while the third, rab7, is found on late endosomes. These findings provide evidence that members of the YPT1/SEC4 subfamily of GTP binding proteins are localized to specific exocytic and endocytic subcompartments in mammalian cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase.

              DNA coding for bacteriophage T7 RNA polymerase was ligated to a vaccinia virus transcriptional promoter and integrated within the vaccinia virus genome. The recombinant vaccinia virus retained infectivity and stably expressed T7 RNA polymerase in mammalian cells. Target genes were constructed by inserting DNA segments that code for beta-galactosidase or chloramphenicol acetyltransferase into a plasmid with bacteriophage T7 promoter and terminator regions. When cells were infected with the recombinant vaccinia virus and transfected with plasmids containing the target genes, the latter were expressed at high levels. Chloramphenicol acetyltransferase activity was 400-600 times greater than that observed with conventional mammalian transient-expression systems regulated either by the enhancer and promoter regions of the Rous sarcoma virus long terminal repeat or by the simian virus 40 early region. The vaccinia/T7 hybrid virus forms the basis of a simple, rapid, widely applicable, and efficient mammalian expression system.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                11 December 2000
                : 151
                : 6
                : 1207-1220
                Affiliations
                [a ]UMR CNRS 144, Laboratoire Mécanismes Moléculaires du Transport Intracellulaire, Institut Curie, F-75248 Paris Cedex 05, France
                [b ]Unité de Génétique Somatique, URA CNRS 1960, Institut Pasteur, 75724 Paris Cedex 15, France
                Article
                0008123
                10.1083/jcb.151.6.1207
                2190589
                11121436
                94b3b99c-a42a-44d7-b777-306c7e2d6866
                © 2000 The Rockefeller University Press
                History
                : 23 August 2000
                : 10 October 2000
                : 10 October 2000
                Categories
                Original Article

                Cell biology
                endosomes,tgn38,intracellular trafficking,shiga toxin,rab11
                Cell biology
                endosomes, tgn38, intracellular trafficking, shiga toxin, rab11

                Comments

                Comment on this article