• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Reconstruction and classification of tau lepton decays with ILD


Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Tau-lepton decays with up to two \(\pi^0\)'s in the final state, \(\tau^+ \to \pi^+ \bar{\nu}_\tau\), \(\rho^+ (\pi^+\pi^0) \bar{\nu}_\tau\), \(a^+_1 (\pi^+\pi^0\pi^0) \bar{\nu}_\tau\), are used to study the performance of the barrel part of the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) of the International Large Detector (ILD) at the future \(e^+-e^-\) International Linear Collider. A correct reconstruction of the tau decay mode is crucial for constraining the tau spin state and measuring the Higgs boson CP state in \(H\to \tau^+\tau^-\) decays. About 95% of \(\pi^+ \bar{\nu}_\tau\) and 90% of \(\rho^+\bar{\nu}_\tau\) and \(a^+_1\bar{\nu}_\tau\) decays from \(e^+e^-\to Z^0\to \tau^+\tau^-\) reaction at \(e^\pm\)-beam energy of 125 GeV are correctly reconstructed. In a smaller ILD detector, with Si-W ECAL radius reduced by about 20% these numbers degrade by at most 2%. The \(\pi^0\) mass resolution stays below 10%. Since the failures in the tau-lepton reconstruction are mainly due to photons, the increase of the ILD magnetic field from 3.5 T to 4 T does not bring any significant improvement.

      Related collections

      Author and article information


      Custom metadata
      physics.ins-det hep-ex

      High energy & Particle physics, Technical & Applied physics


      Comment on this article