26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time.

          Author Summary

          Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          The DNA-encoded nucleosome organization of a eukaryotic genome.

          Nucleosome organization is critical for gene regulation. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers, competition with site-specific DNA-binding proteins, and the DNA sequence preferences of the nucleosomes themselves. However, it has been difficult to estimate the relative importance of each of these mechanisms in vivo, because in vivo nucleosome maps reflect the combined action of all influencing factors. Here we determine the importance of nucleosome DNA sequence preferences experimentally by measuring the genome-wide occupancy of nucleosomes assembled on purified yeast genomic DNA. The resulting map, in which nucleosome occupancy is governed only by the intrinsic sequence preferences of nucleosomes, is similar to in vivo nucleosome maps generated in three different growth conditions. In vitro, nucleosome depletion is evident at many transcription factor binding sites and around gene start and end sites, indicating that nucleosome depletion at these sites in vivo is partly encoded in the genome. We confirm these results with a micrococcal nuclease-independent experiment that measures the relative affinity of nucleosomes for approximately 40,000 double-stranded 150-base-pair oligonucleotides. Using our in vitro data, we devise a computational model of nucleosome sequence preferences that is significantly correlated with in vivo nucleosome occupancy in Caenorhabditis elegans. Our results indicate that the intrinsic DNA sequence preferences of nucleosomes have a central role in determining the organization of nucleosomes in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA replication in eukaryotic cells.

            The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high-resolution atlas of nucleosome occupancy in yeast.

              We present the first complete high-resolution map of nucleosome occupancy across the whole Saccharomyces cerevisiae genome, identifying over 70,000 positioned nucleosomes occupying 81% of the genome. On a genome-wide scale, the persistent nucleosome-depleted region identified previously in a subset of genes demarcates the transcription start site. Both nucleosome occupancy signatures and overall occupancy correlate with transcript abundance and transcription rate. In addition, functionally related genes can be clustered on the basis of the nucleosome occupancy patterns observed at their promoters. A quantitative model of nucleosome occupancy indicates that DNA structural features may account for much of the global nucleosome occupancy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2013
                September 2013
                12 September 2013
                : 9
                : 9
                : e1003798
                Affiliations
                [1 ]Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                [2 ]Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                [3 ]Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
                University of California San Francisco, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TH ES CAM CAN CAF. Performed the experiments: TH CAM. Analyzed the data: TH ES CAF. Contributed reagents/materials/analysis tools: TH ES CAM CAN CAF. Wrote the paper: TH ES CAN CAF.

                [¤]

                Current address: Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.

                Article
                PGENETICS-D-13-00398
                10.1371/journal.pgen.1003798
                3772097
                24068963
                94dca84d-d37a-46fe-a21b-baf929201821
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 February 2013
                : 30 July 2013
                Page count
                Pages: 23
                Funding
                This work was supported primarily by a grant from the National Institutes of Health (RO1-GM056890 to CAF), including additional support from an American Recovery and Reinvestment Act (ARRA) supplement to GM056890. We thank the University of Wisconsin Graduate School for providing support to TH during the later stages of this project. ES was supported by a postdoctoral fellowship from the Leukemia and Lymphoma Society (#5255-07). The Biotechnology and Biological Sciences Research Council (BB/E023754/1, BB/G001596/1 and BB/K007211/1) supported CAN and CAM, and CAN is a David Phillips Fellow. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article