20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simulation of intra-orbital optic nerve electrical stimulation.

      Medical & Biological Engineering & Computing
      Dura Mater, physiology, Electric Conductivity, Electric Stimulation Therapy, methods, Electrodes, Implanted, Humans, Models, Neurological, Optic Nerve, Orbit, innervation, Retinitis Pigmentosa, therapy

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In blind subjects who still have functional retinal ganglion cells, electrical stimuli applied to the optic nerve can produce localised visual sensations. This has been demonstrated with an intracranially implanted self-sizing spiral cuff electrode, but, to avoid skull opening, intra-orbital cuff implantation is now considered. In its orbital segment, the optic nerve is surrounded by subarachnoidal cerebrospinal fluid (CSF) and dura mater. Dura mater is a tough fibrous tissue that can impede electrical stimulation. In the study, the issue of whether or not to remove the dura mater at the implantation site was addressed using simulation on numerical models. Several volume conductor models were built representing, respectively: the cuff implanted directly around the nerve; the cuff over the nerve after connective tissue encapsulated the implant; and the cuff electrode placed around the dura mater. Stimulation-induced electric potential fields were computed for these configurations using a full 3D finite elements software. Responses of fibres within the nerve were computed. A large range of dural conductivities and several CSF thicknesses were considered. In all simulated conditions, the presence of dura mater around a layer of CSF increased excitation thresholds. Selectivity performance also decreased, but was found to be independent of the CSF thickness. However, simulations showed that, if the diameter of the cuff electrode is adapted to the target nerve, the injected charge associated with activation is limited within a reasonable range. Electrical stimulation of the optic nerve with a cuff electrode implanted around the dura mater should therefore be feasible.

          Related collections

          Author and article information

          Comments

          Comment on this article