3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moxibustion is the main alternative medicine treatment that has been beneficial to diabetic peripheral neuropathy (DPN), a common complication secondary to diabetic microvascular injury. However, the underlying protective mechanism of moxibustion against neuroinflammation remains unclear. We hypothesized that moxibustion treats DPN by regulating the balance of nuclear factor-2 erythroid-related factor-2 ( Nrf2)-nuclear factor-kappa light chain enhancer of B cells ( NF-кB). In vivo, diabetes was induced in rats by injecting streptozotocin (STZ; 60 mg/kg; i.p.). Moxibustion was then applied to “Zusanli” (ST 36), “Guanyuan” (BL 26), and “Yishu” (EX-B 3) acupuncture points. Nerve conduction was detected. Serum interleukin (IL)-1β, IL-6, and IL-8 levels were determined through enzyme-linked immunosorbent assay. NF-κB and Nrf2 proteins were examined through immunoblot analysis. The mRNA of NF-κB and Nrf2 was evaluated through RT-PCR. We found that the conduction velocity and amplitude of the action potentials of sciatic nerve conduction were reduced in the DPN model group but were rescued by moxibustion treatment. Moxibustion also improved the effect of DPN on other parameters, including ultrastructural changes, NF-κB and Nrf2 expression in the sciatic nerve, and serum IL-1β, IL-6, and IL-8 levels. Our data suggested that moxibustion may alleviate neuroinflammation by inhibiting NF-κB and by activating Nrf2. Moxibustion may also provide therapeutic effects for patients with DPN by simultaneously targeting Nrf2 and NF-κB.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis.

          Oxidative stress has been implicated in the etiology of neurodegenerative disease, cancer and aging. Indeed, accumulation of reactive oxygen and nitrogen species generated by inflammatory cells that created oxidative stress is thought to be one of the major factor by which chronic inflammation contributes to neoplastic transformation as well as many other diseases. We have recently reported that mice lacking nuclear factor-erythroid 2-related factor 2 (Nrf2) are more susceptible to dextran sulfate sodium (DSS)-induced colitis and colorectal carcinogenesis. Nrf2 is a basic leucine zipper redox-sensitive transcriptional factor that plays a center role in ARE (antioxidant response element)-mediated induction of phase II detoxifying and antioxidant enzymes. We found that increased susceptibility of Nrf2 deficient mice to DSS-induced colitis and colorectal cancer was associated with decreased expression of antioxidant/phase II detoxifying enzymes in parallel with upregulation of pro-inflammatory cytokines/biomarkers. These findings suggest that Nrf2 may play an important role in defense against oxidative stress possibly by activation of cellular antioxidant machinery as well as suppression of pro-inflammatory signaling pathways. In addition, in vivo and in vitro data generated from our laboratory suggest that many dietary compounds can differentially regulate Nrf2-mediated antioxidant/anti-inflammatory signaling pathways as the first line defense or induce apoptosis once the cells have been damaged. In this review, we will summarize our thoughts on the potential cross-talks between Nrf2 and NFkappaB pathways. Although the mechanisms involved in the cross-talk between these signaling pathways are still illusive, targeting Nrf2-antioxidative stress signaling is an ideal strategy to prevent or treat oxidative stress-related diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Diabetic neuropathies: a statement by the American Diabetes Association.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy☆

              Introduction Diabetes is one of the most debilitating conditions in patients affecting a substantial proportion of the world's population. Diabetes can predispose an individual to metabolic, cardiovascular disturbances and obesity, and these pathologies are accompanied by vascular complications [1]. Hyperglycaemia-induced damage to the endothelial cells results in micro-vascular complications of the diabetes such as diabetic neuropathy, nephropathy and retinopathy and macro-vascular complications such as cardiomyopathy [2]. Diabetic neuropathy remains the most severe form of complication affecting 40–50% of people with both types of diabetes. The clinical features of diabetic neuropathy range from sensory deficit to allodynia and hyperalgesia. Diabetic neuropathy arises from the long term effects of hyperglycaemia induced damage to peripheral nervous tissue as well as the vasa nervorum [3]. The current knowledge of pathophysiological mechanisms of hyperglycaemia-induced diabetic neuropathy is substantial and recent advances made in field could lead to the development of some novel therapeutic strategies targeted at advance glycation end products (AGE), sorbitol accumulation, protein kinase C (PKC) activation and hexosamine pathway. The axis of pathophysiological factors responsible for diabetes and diabetic neuropathy converge at two of the most extensively studied pathways, oxidative–nitrosative stress and neuroinflammation (Fig. 1). Molecular studies have revealed the involvement of transcriptional regulators such as Nrf2-Keap1 and the NF-κB inflammatory cascade in the pathophysiology of many diseases [4]. NF-κB has been shown to respond to the cellular redox status since a reducing environment prevents its activation whereas oxidative/nitrosative stress promotes phosphorylation and degradation of IκB [5]. Nrf2 increases intracellular GSH levels and GSH-dependent enzymes favouring a reducing environment thereby inhibiting NF-κB. Li et al. demonstrated that Nrf2-deficient mice exhibit greater induction of pro-inflammatory genes regulated by NF-κB such as interleukins, TNF-α, iNOS and COX-2 pointing towards the fact that Nrf2 deficiency enhances NF-κB-mediated pro-inflammatory reactions [6]. Soares et al. showed that HO-1 inhibited the TNF-α dependent activation of NF-κB in endothelial cells. It has been postulated that HO-1 induced by the Nrf2-EpRE interaction inhibits the NF-κB dependent transcriptional apparatus. Inhibition of NF-κB downstream of IκB phosphorylation/degradation and nuclear translocation has been hypothesized to be the site of action of HO-1 [11]. These data further support the concept that the Nrf2 directed increase in the expression of HO-1 is one of the hubs for cross-talk between Nrf2 and NF-κB (Figs. 2 and 3). Recent studies have shown that NF-κB suppresses the transcriptional activity of Nrf2. Liu et al. demonstrated that NF-κB p65 subunit repressed the beneficial effects of Nrf2 by promoting the localisation of transcription repressors, histone deacetylases with Nrf2/ARE and sequestering coactivators like CREB binding protein (CBP) [12]. Cells over-expressing NF-κB showed lesser expression of HO-1 which further confirms that NF-κB activation can act as a repressor of Nrf2 transcriptional activity. In a recent study, Yu et al. found that the N-terminal region of p65 subunit of NF-κB was physically associated with Keap1, and thus provide an additional mechanism for Nrf2–ARE inhibition. It was also suggested that NF-κB not only interacted with cytosolic Keap1 but also promoted nuclear translocation of Keap1 [13]. Previous studies with agents like curcumin [17], melatonin [18], resveratrol [19] and sulphoraphane [20] have reported beneficial effects in ameliorating various functional (motor nerve conduction velocity and nerve blood flow), sensorimotor (thermal and mechanical hyperalgesia) and biochemical deficits in experimental diabetic neuropathy (Fig. 4). These agents also suppressed the increased activity and levels of NF-κB and associated proteins and hence protected against neuroinflammation in diabetic neuropathy. As expected, treatment with these agents increased the levels of Nrf2 and HO-1 which further modulating the redox regulation of pro-inflammatory signalling pathways. Additional studies to find any common co-activators or co-repressors shared by these transcription factors and co-regulation by upstream and downstream signalling in these cascades will enable a better appreciation of the crosstalk between these two transcription factors in diabetic neuropathy. In summary, Nrf2 and NF-κB individually affect many signalling cascades to maintain a redox homeostasis; additionally they interact with each other to further modulate level of key redox modulators in health and disease. Studies with specific agents that might regulate the crosstalk between the two central pleiotropic transcription factors, Nrf2 and NF-κB, may be one of the prospective strategies that might aid in finding newer therapeutic choices for prevention and treatment of diabetic neuropathy.
                Bookmark

                Author and article information

                Contributors
                Hwang.tcm@china.com
                tanghunu@163.com
                Journal
                Appl Biochem Biotechnol
                Appl. Biochem. Biotechnol
                Applied Biochemistry and Biotechnology
                Springer US (New York )
                0273-2289
                1559-0291
                17 June 2019
                17 June 2019
                2019
                : 189
                : 4
                : 1167-1182
                Affiliations
                [1 ]GRID grid.34418.3a, ISNI 0000 0001 0727 9022, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, ; Wuhan, 430061 China
                [2 ]GRID grid.257143.6, ISNI 0000 0004 1772 1285, College of Basic Medicine, , Hubei University of Chinese Medicine, ; Wuhan, 430061 China
                [3 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Oncology, Integrated Chinese and Western Medicines, The Central Hospital of Wuhan, Tongji Medical College, , Huazhong University of Science & Technology (HUST), ; Wuhan, 430010 China
                Author information
                http://orcid.org/0000-0003-0444-2263
                Article
                3052
                10.1007/s12010-019-03052-8
                6882806
                31209719
                94e942a7-fb3e-4cd6-95cd-733db04e7139
                © The Author(s) 2019

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 15 January 2019
                : 22 May 2019
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2019

                Biochemistry
                diabetic peripheral neuropathy,moxibustion,neuroinflammation,cytokine
                Biochemistry
                diabetic peripheral neuropathy, moxibustion, neuroinflammation, cytokine

                Comments

                Comment on this article