6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modeling the Growth and Decay of the Antarctic Peninsula Ice Sheet

      , ,
      Quaternary Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A model of the growth and decay of the Antarctic Peninsula Ice Sheet during the last glacial/interglacial cycle is used to identify the main controls on ice sheet behavior. Using as input glaciological assumptions derived by W. F. Budd and I. N. Smith (1982, Annals of Glaciology 3, 42–49), bedrock topography, isostatic compensation, and mass balance relationships, the model is driven by sea-level change over the last 40,000 yr in association with assumed changes in the rate of melting beneath ice shelves. An ice sheet dome over 3.5 km thick grows on the offshore shelf and straits west of the Antarctic Peninsula and reaches a maximum at 18,000 yr B.P. Collapse begins at 14,000 yr B.P. but becomes rapid and continuous after 10,000 yr B.P. The present stable ice cover is achieved at 6500 yr B.P. Ice growth and decay are characterized by thresholds which separate periods of steady state from periods of rapid transition; the thresholds usually relate to topography. Tests show that ice sheet behavior is most sensitive to sea-level change, basal marine melting, and accumulation and is less sensitive to isostasy, spatial variation in accumulation, calving rates, and ice flow parameterization. Tests of the model against field evidence show good agreement in places, as well as discrepancies which require further work.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: not found
          • Article: not found

          Oxygen isotopes, ice volume and sea level

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster

            J. Mercer (1978)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Late Wisconsin and Early Holocene Glacial History, Inner Ross Embayment, Antarctica

              Lateral drift sheets of outlet glaciers that pass through the Transantarctic Mountains constrain past changes of the huge Ross ice drainage system of the Antarctic Ice Sheet. Drift stratigraphy suggests correlation of Reedy III (Reedy Glacier), Beardmore (Beardmore Glacier), Britannia (Hatherton/Darwin Glaciers), Ross Sea (McMurdo Sound), and “younger” (Terra Nova Bay) drifts; radiocarbon dates place the outer limits of Ross Sea drift in late Wisconsin time at 24,000–13,000 yr B.P. Outlet-glacier profiles from these drifts constrain late Wisconsin ice-sheet surface elevations. Within these constraints, we give two extreme late Wisconsin reconstructions of the Ross ice drainage system. Both show little elevation change of the polar plateau coincident with extensive ice-shelf grounding along the inner Ross Embayment. However, in the central Ross Embayment one reconstruction shows floating shelf ice, whereas the other shows a grounded ice sheet. Massive late Wisconsin/Holocene recession of grounded ice from the western Ross Embayment, which was underway at 13,040 yr B.P. and completed by 6600-6020 yr B.P., was accompanied by little change in plateau ice levels inland of the Transantarctic Mountains. Sea level and basal melting probably controlled the extent of grounded ice in the Ross Embayment. The interplay between the precipitation (low late Wisconsin and high Holocene values) and the influence of grounding on outlet glaciers (late Wisconsin thickening and late Wisconsin/Holocene thinning, with effects dying out inland) probably controlled minor elevation changes of the polar plateau.
                Bookmark

                Author and article information

                Journal
                applab
                Quaternary Research
                Quat. res.
                Elsevier BV
                0033-5894
                1096-0287
                March 1989
                January 2017
                : 31
                : 02
                : 119-134
                Article
                10.1016/0033-5894(89)90002-1
                94f14f28-939c-4828-8b0b-145471b45e72
                © 1989

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article