69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

          Author Summary

          Tetherin is a cell surface protein that acts as an antiviral defense. It functions by tethering newly assembled HIV-1 particles to the surface of the infected cell, such that the viral particle is unable to depart and disseminate to other, uninfected cells. HIV-1 possesses an antagonist of tetherin, termed Vpu, that abolishes tetherin function. We found that HIV-1 is an effective antagonist of human and chimpanzee variants of tetherin but is unable to antagonize tetherins from two monkey species. Additionally, we found that sequence differences in a portion of the protein that is embedded in cell membranes determined whether or not it could be antagonized by Vpu. Since the Vpu protein is alsi a membrane embedded protein, this result suggests that Vpu and tetherin interact within cell membranes. We also show that tetherin has been evolving rapidly, and has likely been placed under selective pressure to change sequence. Notably, portions of tetherin that appear to have been placed under selective pressure coincide with positions that influence Vpu antagonism. Therefore, the evolutionary history of primates determines the effectiveness of HIV-1 Vpu in modern species. Thus, tetherin could impose a barrier to cross species transmission of retroviruses.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

          Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-alpha, and it consists of protein-based tethers, which we term 'tetherins', that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin's antiviral activity is a potential therapeutic strategy in HIV/AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiviral actions of interferons.

            C Samuel (2001)
            Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein.

              The HIV-1 accessory protein Vpu counteracts a host factor that restricts virion release from infected cells. Here we show that the interferon-induced cellular protein BST-2/HM1.24/CD317 is such a factor. BST-2 is downregulated from the cell surface by Vpu, and BST-2 is specifically expressed in cells that support the vpu phenotype. Exogenous expression of BST-2 inhibits HIV-1 virion release, while suppression of BST-2 relieves the requirement for Vpu. Downregulation of BST-2 requires both the transmembrane/ion channel domain and conserved serines in the cytoplasmic domain of Vpu. Endogenous BST-2 colocalizes with the HIV-1 structural protein Gag in endosomes and at the plasma membrane, suggesting that BST-2 traps virions within and on infected cells. The unusual structure of BST-2, which includes a transmembrane domain and a lumenal GPI anchor, may allow it to retain nascent enveloped virions on cellular membranes, providing a mechanism of viral restriction counteracted by a specific viral accessory protein.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2009
                February 2009
                13 February 2009
                : 5
                : 2
                : e1000300
                Affiliations
                [1 ]Aaron Diamond AIDS Research Center and The Rockefeller University, New York, New York, United States of America
                [2 ]Howard Hughes Medical Institute, New York, New York, United States of America
                [3 ]Department of Microbiology and Molecular Genetics, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
                Northwestern University, United States of America
                Author notes
                [¤]

                Current address: Department of Infectious Disease, King's College London, Guy's Hospital, London, United Kingdom

                Conceived and designed the experiments: MM TZ TH WEJ SJDN PDB. Performed the experiments: MM TZ TH MB IBF SJDN. Analyzed the data: MM TZ TH MB IBF WEJ SJDN PDB. Wrote the paper: MM WEJ PDB.

                Article
                08-PLPA-RA-1349R2
                10.1371/journal.ppat.1000300
                2633611
                19214216
                94fa6a18-212e-4826-bc53-c22dc14a82e2
                McNatt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 October 2008
                : 16 January 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Virology/Host Antiviral Responses
                Virology/Immunodeficiency Viruses
                Virology/Mechanisms of Resistance and Susceptibility, including Host Genetics

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article