4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DNAzyme-integrated plasmonic nanosensor for bacterial sample-to-answer detection

      , , , ,
      Biosensors and Bioelectronics
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pathogenic bacteria pose a serious threat to public safety and health, and cause significant losses in the global economy and in lives. The current golden standard, culture-based method, for bacterial detection is often costly, laborious, and time-consuming (even weeks). Thus, there is an urgent need to develop rapid, reliable and easy-to-use approaches for bacterial detection. Herein, we present a new detection strategy termed as 'DNAzyme-Integrated Plasmonic Nanosensor' (DIPNs) that can selectively detect target bacteria in a simple, inexpensive and culture-free process, which combines real-time DNAzyme-based sensor and enzyme-responsive nanoplasmonic biosensor system. The DIPNs platform takes advantage of a bacteria-specific RNA-cleaving DNAzyme probe as the molecular recognition element and enzyme-responsive plasmonic nanoparticles' localized surface plasmon resonance (LSPR) as the signal readout. Using Escherichia coli (E. coli) as a model analyte, we demonstrated that the DIPNs system can provide the fast and low concentration (down to 50 bacteria per mL) quantification of E. coli even in the complex fluids (e.g., milk, serum, juice) with naked eyes, which would be expected for the detection of bacterial pathogens in the simple, low-cost and on-site manner.

          Related collections

          Author and article information

          Journal
          Biosensors and Bioelectronics
          Biosensors and Bioelectronics
          Elsevier BV
          09565663
          March 2017
          March 2017
          : 89
          : 880-885
          Article
          10.1016/j.bios.2016.09.103
          27818048
          95036b82-ceb9-4edd-b681-26ae7b3dc770
          © 2017

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article