Blog
About

19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Hepcidin-25 by Short- and Long-Acting rhEPO May Be Dependent on Ferritin and Predict the Response to rhEPO in Hemodialysis Patients

      Read this article at

      ScienceOpenPublisherPMCPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: We examined whether regulation of hepcidin-25 by short- or long-acting recombinant human erythropoietin (rhEPO) is dependent on ferritin and predicts the response to rhEPO in hemodialysis (HD) patients. Methods: Two studies with rhEPO were performed in 9 HD patients with a 2-year interval. Serum hepcidin-25 was measured at 0-18 h after intravenous epoetin-β (EPO) or methoxy polyethylene glycol-epoetin-β (PEG-EPO) administration and on days 3-7 after PEG-EPO. Hemoglobin (Hb), serum ferritin, transferrin, C-reactive protein (CRP), and interleukin (IL)-6 were analyzed before hepcidin measurement and 6 months after rhEPO. Based on the serum ferritin levels before hepcidin measurement, the patients in the two studies with EPO or PEG-EPO were combined into low (11; serum ferritin of <15.0 ng/ml) and high ferritin groups (7; serum ferritin of ≥15.0 ng/ml). The response of hepcidin-25 to rhEPO and the effect of rhEPO on anemia were compared between the groups. Results: The serum hepcidin-25 levels rose at 6-9 h and returned to the baseline at 18 h after EPO. They rose at 6-9 h, returned to the baseline at 18 h, and decreased on day 5-7 after PEG-EPO. Serum hepcidin-25 levels were low (<5.0 ng/ml) in the low ferritin group, but rose at 6-9 h after rhEPO in the high ferritin group. Serum transferrin levels were similar, and CRP and IL-6 were normal in both groups. Hb tended to increase in the low ferritin group, but it significantly decreased in the high ferritin group after rhEPO. Conclusion: Regulation of hepcidin-25 by rhEPO may be dependent on ferritin, affecting the response to rhEPO in HD patients.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Hepcidin and iron regulation, 10 years later.

           Tomas Ganz (2011)
          Under evolutionary pressure to counter the toxicity of iron and to maintain adequate iron supply for hemoglobin synthesis and essential metabolic functions, humans and other vertebrates have effective mechanisms to conserve iron and to regulate its concentration, storage, and distribution in tissues. The iron-regulatory hormone hepcidin, first described 10 years ago, and its receptor and iron channel ferroportin control the dietary absorption, storage, and tissue distribution of iron. Hepcidin causes ferroportin internalization and degradation, thereby decreasing iron transfer into blood plasma from the duodenum, from macrophages involved in recycling senescent erythrocytes, and from iron-storing hepatocytes. Hepcidin is feedback regulated by iron concentrations in plasma and the liver and by erythropoietic demand for iron. Genetic malfunctions affecting the hepcidin-ferroportin axis are a main cause of iron overload disorders but can also cause iron-restricted anemias. Modulation of hepcidin and ferroportin expression during infection and inflammation couples iron metabolism to host defense and decreases iron availability to invading pathogens. This response also restricts the iron supply to erythropoietic precursors and may cause or contribute to the anemia associated with infections and inflammatory disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of hepcidin during anemia requires erythropoietic activity.

            Hepcidin, the principal iron regulatory hormone, regulates the absorption of iron from the diet and the mobilization of iron from stores. Previous studies indicated that hepcidin is suppressed during anemia, a response that would appropriately increase the absorption of iron and its release from stores. Indeed, in the mouse model, hepcidin-1 was suppressed after phlebotomy or erythropoietin administration but the suppression was reversed by inhibitors of erythropoiesis. The suppression of hepcidin necessary to match iron supply to erythropoietic demand thus requires increased erythropoiesis and is not directly mediated by anemia, tissue hypoxia, or erythropoietin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of serum hepcidin in renal failure and inflammation by using ProteinChip System.

              Hepcidin, a key regulator of iron metabolism, is expressed in the liver, distributed in blood, and excreted in urine. However, to date, no reliable and practical method for measuring the bioactive form of hepcidin in serum has been developed. Here, we used surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS) to analyze the distinctive serum proteomic patterns of patients receiving hemodialysis. In the range of 1000 to 15,000 m/z, we found 3 peptides at 2192, 2789, and 2851 m/z that showed a significant correlation with the serum ferritin levels. The molecular sizes of peptides at 2192 and 2789 m/z matched with the reported sizes of hepcidin-20 and -25, respectively, and the serum peptide at 2789 m/z was identified as hepcidin-25 by collision-induced dissociation tandem MS. By using SELDI-TOF MS, we developed a semiquantitative assay for hepcidin-25. In this assay, the level of serum hepcidin-25 correlated well with levels of serum ferritin and serum interleukin-6. Hepcidin-25 was found to accumulate in the serum of patients receiving hemodialysis; this could contribute to the pathogenesis of renal anemia by decreasing the available iron for hematopoiesis. Thus, SELDI-TOF MS would be a clinically useful tool to detect and semiquantify bioactive hepcidin in serum.
                Bookmark

                Author and article information

                Journal
                NNE
                NNE
                10.1159/issn.1664-5529
                Nephron Extra
                S. Karger AG
                1664-5529
                2014
                January – April 2014
                16 April 2014
                : 4
                : 1
                : 55-63
                Affiliations
                aDivision of Nephrology, Department of Internal Medicine, and bDepartment of Pediatrics, Public Central Hospital of Matto Ishikawa, and cDivision of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, and dBiomarker Society, Kawasaki, Japan
                Author notes
                *Norishi Ueda, MD, PhD, Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588 (Japan), E-Mail nueda@mattohp.com
                Article
                362212 PMC4024510 Nephron Extra 2014;4:55-63
                10.1159/000362212
                PMC4024510
                24847351
                © 2014 S. Karger AG, Basel

                Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) ( http://www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 3, Pages: 9
                Categories
                Original Paper

                Cardiovascular Medicine, Nephrology

                Hemodialysis, Erythropoietin, Anemia, Iron deficiency, Hepcidin, Ferritin

                Comments

                Comment on this article