Blog
About

526
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy.

          Related collections

          Most cited references 180

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomal microRNA: a diagnostic marker for lung cancer.

          To date, there is no screening test for lung cancer shown to affect overall mortality. MicroRNAs (miRNAs) are a class of small noncoding RNA genes found to be abnormally expressed in several types of cancer, suggesting a role in the pathogenesis of human cancer. We evaluated the circulating levels of tumor exosomes, exosomal small RNA, and specific exosomal miRNAs in patients with and without lung adenocarcinoma, correlating the levels with the American Joint Committee on Cancer (AJCC) disease stage to validate it as an acceptable marker for diagnosis and prognosis in patients with adenocarcinoma of the lung. To date, 27 patients with lung adenocarcinoma AJCC stages I-IV and 9 controls, all aged 21-80 years, were enrolled in the study. Small RNA was detected in the circulating exosomes. The mean exosome concentration was 2.85 mg/mL (95% CI, 1.94-3.76) for the lung adenocarcinoma group versus 0.77 mg/mL (95% CI, 0.68-0.86) for the control group (P < .001). The mean miRNA concentration was 158.6 ng/mL (95% CI, 145.7-171.5) for the lung adenocarcinoma group versus 68.1 ng/mL (95% CI, 57.2-78.9) for the control group (P < .001). Comparisons between peripheral circulation miRNA-derived exosomes and miRNA-derived tumors indicated that the miRNA signatures were not significantly different. The significant difference in total exosome and miRNA levels between lung cancer patients and controls, and the similarity between the circulating exosomal miRNA and the tumor-derived miRNA patterns, suggest that circulating exosomal miRNA might be useful as a screening test for lung adenocarcinoma. No correlation between the exosomal miRNA levels and the stage of disease can be made at this point.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis.

            In the past several years, the importance of microRNA (miRNA) in cancer cells has been recognized. Proper control of miRNA expression is essential for maintaining a steady state of the cellular machinery. Recently, it was discovered that extracellular miRNAs circulate in the blood of both healthy and diseased patients, although ribonuclease is present in both plasma and serum. Most of the circulating miRNAs are included in lipid or lipoprotein complexes, such as apoptotic bodies, microvesicles, or exosomes, and are, therefore, highly stable. The existence of circulating miRNAs in the blood of cancer patients has raised the possibility that miRNAs may serve as a novel diagnostic marker. However, the secretory mechanism and biological function, as well as the meaning of the existence of extracellular miRNAs, remain largely unclear. In this review, we summarize the usefulness of circulating miRNA for cancer diagnosis, prognosis, and therapeutics. Furthermore, we propose a mechanism for the secretion and incorporation of miRNA into the cells. © 2010 Japanese Cancer Association.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes

              Using ferritin-labeled protein A and colloidal gold-labeled anti-rabbit IgG, the fate of the sheep transferrin receptor has been followed microscopically during reticulocyte maturation in vitro. After a few minutes of incubation at 37 degrees C, the receptor is found on the cell surface or in simple vesicles of 100-200 nm, in which the receptor appears to line the limiting membrane of the vesicles. With time (60 min or longer), large multivesicular elements (MVEs) appear whose diameter may reach 1-1.5 micron. Inside these large MVEs are round bodies of approximately 50-nm diam that bear the receptor at their external surfaces. The limiting membrane of the large MVEs is relatively free from receptor. When the large MVEs fuse with the plasma membrane, their contents, the 50-nm bodies, are released into the medium. The 50-nm bodies appear to arise by budding from the limiting membrane of the intracellular vesicles. Removal of surface receptor with pronase does not prevent exocytosis of internalized receptor. It is proposed that the exocytosis of the approximately 50-nm bodies represents the mechanism by which the transferrin receptor is shed during reticulocyte maturation.
                Bookmark

                Author and article information

                Contributors
                +36-1-2102930 , +36-1-3036968 , edit.buzas@gmail.com
                Journal
                Cell Mol Life Sci
                Cellular and Molecular Life Sciences
                SP Birkhäuser Verlag Basel (Basel )
                1420-682X
                1420-9071
                11 May 2011
                11 May 2011
                August 2011
                : 68
                : 16
                : 2667-2688
                Affiliations
                [1 ]Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Nagyvárad tér 4, Budapest, 1089 Hungary
                [2 ]Research Group for Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Nagyvárad tér 4, Budapest, Hungary
                [3 ]Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest, Hungary
                [4 ]Department of Rheumatology, Semmelweis University, Frankel Leó utca 54, Budapest, Hungary
                Article
                689
                10.1007/s00018-011-0689-3
                3142546
                21560073
                © The Author(s) 2011
                Categories
                Review
                Custom metadata
                © Springer Basel AG 2011

                Comments

                Comment on this article