19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Three-Dimensional Charge Density Wave Order in YBa2Cu3O6.67 at High Magnetic Fields

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O(6+x)

          There are increasing indications that superconductivity competes with other orders in cuprate superconductors, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of \(\bf \sim 3.2\) lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba\(_2\)Cu\(_3\)O\(_{6+x}\) with hole concentrations \(0.09 \leq p \leq 0.13\) per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature, \(T_c\); further cooling below \(T_c\) abruptly reverses the divergence of the charge correlations. In combination with prior observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge-density-wave instability that competes with superconductivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Electron pockets in the Fermi surface of hole-doped high-Tc superconductors

            High-temperature superconductivity occurs as copper oxides are chemically tuned to have a carrier concentration intermediate between their metallic state at high doping and their insulating state at zero doping. The underlying evolution of the electron system in the absence of superconductivity is still unclear and a question of central importance is whether it involves any intermediate phase with broken symmetry. The Fermi surface of underdoped YBa2Cu3Oy and YBa2Cu4O8 was recently shown to include small pockets in contrast with the large cylinder characteristic of the overdoped regime1, pointing to a topological change in the Fermi surface. Here we report the observation of a negative Hall resistance in the magnetic field-induced normal state of YBa2Cu3Oy and YBa2Cu4O8, which reveals that these pockets are electron-like. We propose that electron pockets arise most likely from a reconstruction of the Fermi surface caused by the onset of a density-wave phase, as is thought to occur in the electron-doped materials near the onset of antiferromagnetic order Comparison with materials of the La2CuO4 family that exhibit spin/charge density-wave order suggests that a Fermi surface reconstruction also occurs in those materials, pointing to a generic property of high-Tc superconductors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Magnetic-field-induced charge-stripe order in the high temperature superconductor YBa2Cu3Oy

              Electronic charges introduced in copper-oxide planes generate high-transition temperature superconductivity but, under special circumstances, they can also order into filaments called stripes. Whether an underlying tendency of charges to order is present in all cuprates and whether this has any relationship with superconductivity are, however, two highly controversial issues. In order to uncover underlying electronic orders, magnetic fields strong enough to destabilise superconductivity can be used. Such experiments, including quantum oscillations in YBa2Cu3Oy (a notoriously clean cuprate where charge order is not observed) have suggested that superconductivity competes with spin, rather than charge, order. Here, using nuclear magnetic resonance, we demonstrate that high magnetic fields actually induce charge order, without spin order, in the CuO2 planes of YBa2Cu3Oy. The observed static, unidirectional, modulation of the charge density breaks translational symmetry, thus explaining quantum oscillation results, and we argue that it is most likely the same 4a-periodic modulation as in stripe-ordered cuprates. The discovery that it develops only when superconductivity fades away and near the same 1/8th hole doping as in La2-xBaxCuO4 suggests that charge order, although visibly pinned by CuO chains in YBa2Cu3Oy, is an intrinsic propensity of the superconducting planes of high Tc cuprates.
                Bookmark

                Author and article information

                Journal
                25 June 2015
                Article
                10.1126/science.aac6257
                1506.07910
                950ea5b7-e53c-47fb-8a8a-c0b9033f6750

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Science 350, 949 (2015)
                cond-mat.str-el cond-mat.supr-con

                Comments

                Comment on this article