47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Klotho −/− Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23 −/− and Klotho −/− ( Kl −/− ) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23 −/− mice ameliorated the phenotype in Fgf23 −/−/PTH −/− mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23 −/− mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl −/− ( Kl −/−/PTH −/− or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl −/−/PTH −/− mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23 −/−/PTH −/− mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl −/−/PTH −/− mice. Moreover, continuous PTH infusion of Kl −/− mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl −/− , but not of Fgf23 −/− mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho.

          Author Summary

          Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. PTH, Klotho, and FGF23 are the key regulators of blood mineral ion homeostasis. Klotho is a type-I membrane protein and has been identified as cofactor required for FGF23 to bind and activate its receptor. Loss of either Klotho or Fgf23 activity results in a similar abnormal phenotype, including severe defects in skeletal mineralization and alterations in mineral ion balance. Here we describe a new mouse model in which we eliminated PTH from Kl −/− mice, and we can show that the skeletal mineralization defect was completely rescued in Kl −/− / PTH −/− mice and that this phenomenon was accompanied by a reduction in the high levels of osteopontin in bone and serum. We also present additional data showing that continuous infusion of Kl −/− mice with PTH results in an elevation in Opn levels and subsequently increased osteoid volume. Interestingly, this result differs from our previous report in which we describe that the osteomalacia and the high Opn levels in Fgf23 −/− / PTH −/− mice persisted. Our finding suggests that PTH, possibly by regulating osteopontin, is responsible for the skeletal mineralization defect in Kl −/− mice, but not in Fgf23 −/− mice.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Augmented Wnt signaling in a mammalian model of accelerated aging.

          The contribution of stem and progenitor cell dysfunction and depletion in normal aging remains incompletely understood. We explored this concept in the Klotho mouse model of accelerated aging. Analysis of various tissues and organs from young Klotho mice revealed a decrease in stem cell number and an increase in progenitor cell senescence. Because klotho is a secreted protein, we postulated that klotho might interact with other soluble mediators of stem cells. We found that klotho bound to various Wnt family members. In a cell culture model, the Wnt-klotho interaction resulted in the suppression of Wnt biological activity. Tissues and organs from klotho-deficient animals showed evidence of increased Wnt signaling, and ectopic expression of klotho antagonized the activity of endogenous and exogenous Wnt. Both in vitro and in vivo, continuous Wnt exposure triggered accelerated cellular senescence. Thus, klotho appears to be a secreted Wnt antagonist and Wnt proteins have an unexpected role in mammalian aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The parathyroid is a target organ for FGF23 in rats.

            Phosphate homeostasis is maintained by a counterbalance between efflux from the kidney and influx from intestine and bone. FGF23 is a bone-derived phosphaturic hormone that acts on the kidney to increase phosphate excretion and suppress biosynthesis of vitamin D. FGF23 signals with highest efficacy through several FGF receptors (FGFRs) bound by the transmembrane protein Klotho as a coreceptor. Since most tissues express FGFR, expression of Klotho determines FGF23 target organs. Here we identify the parathyroid as a target organ for FGF23 in rats. We show that the parathyroid gland expressed Klotho and 2 FGFRs. The administration of recombinant FGF23 led to an increase in parathyroid Klotho levels. In addition, FGF23 activated the MAPK pathway in the parathyroid through ERK1/2 phosphorylation and increased early growth response 1 mRNA levels. Using both rats and in vitro rat parathyroid cultures, we show that FGF23 suppressed both parathyroid hormone (PTH) secretion and PTH gene expression. The FGF23-induced decrease in PTH secretion was prevented by a MAPK inhibitor. These data indicate that FGF23 acts directly on the parathyroid through the MAPK pathway to decrease serum PTH. This bone-parathyroid endocrine axis adds a new dimension to the understanding of mineral homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel.

              Blood calcium concentration is maintained within a narrow range despite large variations in dietary input and body demand. The Transient Receptor Potential ion channel TRPV5 has been implicated in this process. We report here that TRPV5 is stimulated by the mammalian hormone klotho. Klotho, a beta-glucuronidase, hydrolyzes extracellular sugar residues on TRPV5, entrapping the channel in the plasma membrane. This maintains durable calcium channel activity and membrane calcium permeability in kidney. Thus, klotho activates a cell surface channel by hydrolysis of its extracellular N-linked oligosaccharides.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2012
                May 2012
                17 May 2012
                : 8
                : 5
                : e1002726
                Affiliations
                [1 ]Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
                [2 ]State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
                [3 ]Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
                [4 ]Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
                Indiana University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: QY BL. Performed the experiments: QY TS MD HS CS. Analyzed the data: QY TS RGE BL. Contributed reagents/materials/analysis tools: TS CS. Wrote the paper: QY MD BL.

                Article
                PGENETICS-D-11-02409
                10.1371/journal.pgen.1002726
                3355080
                22615584
                95108945-be05-434c-b845-e49d963b878e
                Yuan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 November 2011
                : 5 April 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Developmental Biology
                Cell Differentiation
                Genetics
                Animal Genetics
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Endocrinology
                Endocrine Physiology
                Endocrine Glands
                Hormones
                Parathyroid

                Genetics
                Genetics

                Comments

                Comment on this article