17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Role of Progesterone Receptor Isoforms in Female Sexual Behavior Induced by Progestins in Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Progesterone and its ring A reduced metabolites regulate female sexual behavior through the direct or indirect activation of progesterone receptor (PR) which has two isoforms with different function and regulation: PR-A and PR-B. The contribution of each PR isoform to the regulation of lordosis in rats is unknown. We explored the role of PR isoforms in lordosis display induced by progesterone and two of its ring A reduced metabolites: 5α-pregnan-3,20-dione (5α-DHP), and 5β,3β-pregnan-20-one (5β,3β-Pgl) in adult ovariectomized rats. Two weeks after ovariectomy, the animals were injected subcutaneously with 5 μg of estradiol benzoate (EB), and 40 h later, progestins were injected intracerebroventricularly. PR-B and total PR (PR-A + PR-B) sense or antisense oligonucleotides were administered intracerebroventricularly immediately before EB injection and 24 h later. Lordosis was evaluated 30, 120 and 240 min after progestin administration. Western blot analysis of both PR isoforms was performed in the hypothalamus and preoptic area 24 h after lordosis tests. All progestins induced maximal lordosis 120 min after administration, and antisense oligonucleotides against both PR isoforms inhibited lordosis in all animals. PR-B antisense oligonucleotides also inhibited lordosis induced by progesterone and 5α-DHP although with less efficacy than total PR antisense oligonucleotides, but the former inhibited lordosis induced by 5β,3β-Pgl in a similar manner as total PR antisense oligonucleotides. In the hypothalamus and preoptic area, the content of both PR isoforms or PR-B alone was diminished by the administration of total or PR-B antisense oligonucleotides, respectively. These results suggest that the PR-B isoform is essential for the display of the lordosis behavior in rats.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform.

          Progesterone regulates reproductive function through two intracellular receptors, progesterone receptor-A (PR-A) and progesterone receptor-B (PR-B), that arise from a single gene and function as transcriptional regulators of progesterone-responsive genes. Although in vitro studies show that PR isoforms can display different transcriptional regulatory activities, their physiological significance is unknown. By selective ablation of PR-A in mice, we show that the PR-B isoform modulates a subset of reproductive functions of progesterone by regulation of a subset of progesterone-responsive target genes. Thus, PR-A and PR-B are functionally distinct mediators of progesterone action in vivo and should provide suitable targets for generation of tissue-selective progestins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding.

            The human progesterone receptor (PR) exists as two functionally distinct isoforms, hPRA and hPRB. hPRB functions as a transcriptional activator in most cell and promoter contexts, while hPRA is transcriptionally inactive and functions as a strong ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity. Although the precise mechanism of hPRA-mediated transrepression is not fully understood, an inhibitory domain (ID) within human PR, which is necessary for transrepression by hPRA, has been identified. Interestingly, although ID is present within both hPR isoforms, it is functionally active only in the context of hPRA, suggesting that the two receptors adopt distinct conformations within the cell which allow hPRA to interact with a set of cofactors that are different from those recognized by hPRB. In support of this hypothesis, we identified, using phage display technology, hPRA-selective peptides which differentially modulate hPRA and hPRB transcriptional activity. Furthermore, using a combination of in vitro and in vivo methodologies, we demonstrate that the two receptors exhibit different cofactor interactions. Specifically, it was determined that hPRA has a higher affinity for the corepressor SMRT than hPRB and that this interaction is facilitated by ID. Interestingly, inhibition of SMRT activity, by either a dominant negative mutant (C'SMRT) or histone deacetylase inhibitors, reverses hPRA-mediated transrepression but does not convert hPRA to a transcriptional activator. Together, these data indicate that the ability of hPRA to transrepress steroid hormone receptor transcriptional activity and its inability to activate progesterone-responsive promoters occur by distinct mechanisms. To this effect, we observed that hPRA, unlike hPRB, was unable to efficiently recruit the transcriptional coactivators GRIP1 and SRC-1 upon agonist binding. Thus, although both receptors contain sequences within their ligand-binding domains known to be required for coactivator binding, the ability of PR to interact with cofactors in a productive manner is regulated by sequences contained within the amino terminus of the receptors. We propose, therefore, that hPRA is transcriptionally inactive due to its inability to efficiently recruit coactivators. Furthermore, our experiments indicate that hPRA interacts efficiently with the corepressor SMRT and that this activity permits it to function as a transdominant repressor.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function

              E Vegeto (1993)
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2009
                July 2009
                05 June 2009
                : 90
                : 1
                : 73-81
                Affiliations
                aUnidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, D.F., bCentro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla, Tlaxcala, and cFacultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, México, D.F.
                Article
                224406 Neuroendocrinology 2009;90:73–81
                10.1159/000224406
                19506349
                953439e8-67f0-40e0-8167-1cf296eb9714
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 31 October 2008
                : 13 December 2008
                Page count
                Figures: 3, References: 57, Pages: 9
                Categories
                Behavior

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Brain,Progesterone receptor isoforms,Progestins,Lordosis,Progesterone

                Comments

                Comment on this article