22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnostic accuracy of the InBiOS AMD rapid diagnostic test for the detection of Burkholderia pseudomallei antigen in grown blood culture broth

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To assess the diagnostic and operational performance of the InBiOS AMD rapid diagnostic test (RDT) (Seattle, USA) for the detection of B. pseudomallei in grown blood culture broth. The InBiOS RDT is a lateral flow immunoassay in a strip format detecting B. pseudomallei capsular polysaccharide in culture fluids, marketed for research only. Broth of blood culture bottles (BacT/Alert, bioMérieux, Marcy L’Etoile, France) sampled in adult patients at the Sihanouk Hospital Center of HOPE, Phnom Penh, Cambodia, during 2010–2017 and stored at − 80 °C was tested. They included samples grown with B. pseudomallei ( n = 114), samples with no growth ( n = 12), and samples with growth of other pathogens ( n = 139, among which Burkholderia cepacia ( n = 5)). Diagnostic sensitivity and specificity were 96.5% [95% confidence interval (CI): 91.3–98.6%] and 100% [CI: 97.5–100%] respectively. Background clearance and line intensities were good and very good. The RDT’s test strip, not housed in a cassette, caused difficulties in manipulation and biosafety. The centrifugation step prescribed by the procedure challenged biosafety, but processing of 19 B. pseudomallei samples without centrifugation showed similar results for line intensity and background clearance, compared to centrifugation. The InBiOS RDT showed excellent accuracy for detection of B. pseudomallei in grown blood culture broth. Provided operational adaptations such as cassette housing, it has the potential to reduce time to diagnosis of melioidosis.

          Electronic supplementary material

          The online version of this article (10.1007/s10096-018-3237-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Increasing Incidence of Human Melioidosis in Northeast Thailand

          Melioidosis is a serious community-acquired infectious disease caused by the Gram-negative environmental bacterium Burkholderia pseudomallei. A prospective cohort study identified 2,243 patients admitted to Sappasithiprasong Hospital in northeast Thailand with culture-confirmed melioidosis between 1997 and 2006. These data were used to calculate an average incidence rate for the province of 12.7 cases of melioidosis per 100,000 people per year. Incidence increased incrementally from 8.0 (95% confidence interval [CI] = 7.2–10.0) in 2000 to 21.3 (95% CI = 19.2–23.6) in 2006 (P < 0.001; χ2 test for trend). Male sex, age ≥ 45 years, and either known or undiagnosed diabetes were independent risk factors for melioidosis. The average mortality rate from melioidosis over the study period was 42.6%. The minimum estimated population mortality rate from melioidosis in 2006 was 8.63 per 100,000 people (95% CI = 7.33–10.11), the third most common cause of death from infectious diseases in northeast Thailand after human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and tuberculosis.
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood.

            When a bloodstream infection (BSI) is suspected, most of the laboratory results-biochemical and haematologic-are available within the first hours after hospital admission of the patient. This is not the case for diagnostic microbiology, which generally takes a longer time because blood culture, which is to date the reference standard for the documentation of the BSI microbial agents, relies on bacterial or fungal growth. The microbial diagnosis of BSI directly from blood has been proposed to speed the determination of the etiological agent but was limited by the very low number of circulating microbes during these paucibacterial infections. Thanks to recent advances in molecular biology, including the improvement of nucleic acid extraction and amplification, several PCR-based methods for the diagnosis of BSI directly from whole blood have emerged. In the present review, we discuss the advantages and limitations of these new molecular approaches, which at best complement the culture-based diagnosis of BSI.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Assessment of the prozone effect in malaria rapid diagnostic tests

              Background The prozone effect (or high doses-hook phenomenon) consists of false-negative or false-low results in immunological tests, due to an excess of either antigens or antibodies. Although frequently cited as a cause of false-negative results in malaria rapid diagnostic tests (RDTs), especially at high parasite densities of Plasmodium falciparum, it has been poorly documented. In this study, a panel of malaria RDTs was challenged with clinical samples with P. falciparum hyperparasitaemia (> 5% infected red blood cells). Methods Twenty-two RDT brands were tested with seven samples, both undiluted and upon 10 ×, 50 × and 100 × dilutions in NaCl 0.9%. The P. falciparum targets included histidine-rich protein-2 (HRP-2, n = 17) and P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH, n = 5). Test lines intensities were recorded in the following categories: negative, faint, weak, medium or strong. The prozone effect was defined as an increase in test line intensity of at least one category after dilution, if observed upon duplicate testing and by two readers. Results Sixteen of the 17 HRP-2 based RDTs were affected by prozone: the prozone effect was observed in at least one RDT sample/brand combination for 16/17 HRP-2 based RDTs in 6/7 samples, but not for any of the Pf-pLDH tests. The HRP-2 line intensities of the undiluted sample/brand combinations with prozone effect (n = 51) included a single negative (1.9%) and 29 faint and weak readings (56.9%). The other target lens (P. vivax-pLDH, pan-specific pLDH and aldolase) did not show a prozone effect. Conclusion This study confirms the prozone effect as a cause of false-negative HRP-2 RDTs in samples with hyperparasitaemia.

                Author and article information

                Contributors
                0032/3/345.57.88 , mpeeters@itg.be
                Journal
                Eur J Clin Microbiol Infect Dis
                Eur. J. Clin. Microbiol. Infect. Dis
                European Journal of Clinical Microbiology & Infectious Diseases
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0934-9723
                1435-4373
                28 March 2018
                28 March 2018
                2018
                : 37
                : 6
                : 1169-1177
                Affiliations
                [1 ]ISNI 0000 0001 2153 5088, GRID grid.11505.30, Department of Clinical Sciences, , Institute of Tropical Medicine, ; Antwerp, Belgium
                [2 ]ISNI 0000 0004 0396 8383, GRID grid.452809.2, Sihanouk Hospital Center of HOPE, ; Phnom Penh, Cambodia
                [3 ]ISNI 0000 0004 0433 0314, GRID grid.98913.3a, SRI International, ; Menlo Park, CA USA
                [4 ]ISNI 0000 0001 0668 7884, GRID grid.5596.f, Department of Microbiology and Immunology, , KU Leuven, ; Leuven, Belgium
                Author information
                http://orcid.org/0000-0001-5819-8783
                Article
                3237
                10.1007/s10096-018-3237-3
                5948296
                29594800
                953a986d-8c8d-49df-adf1-f9c1f046defb
                © The Author(s) 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 25 January 2018
                : 19 March 2018
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2018

                Infectious disease & Microbiology
                burkholderia pseudomallei,melioidosis,rapid diagnostic test,low-resource setting

                Comments

                Comment on this article

                Related Documents Log