27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase Produced by Escherichia coli, and Klebsiella pneumoniae Isolates in an Educational Hospital

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Extended-spectrum beta-lactamases (ESBLs) are a group of enzymes that hydrolyze antibiotics, including those containing new cephalosporins, and they are found in a significant percentage of Escherichia coli and Klebsiella pneumoniae strains. With the widespread use of antibiotics, difficulties with infection therapy caused by drug resistant organisms, especially those that have acquired resistance to beta-lactams, such as broad-spectrum cephalosporins, have amplified the above-mentioned organisms.

          Objectives:

          This study was conducted to characterize ESBLs among E. coli and K. pneumonia isolates by molecular and phenotypic methods.

          Materials and Methods:

          Different strains of E. coli and K. pneumonia were collected from patients with urinary tract infections. The ESBL phenotype was determined by a double disk diffusion test (DDDT). In addition, polymerase chain reaction (PCR) analysis specific for β-lactamase genes of the TEM and SHV family was carried out. The PCR products were run on agarose and examined for DNA bands.

          Results:

          A total of 245 E. coli and 55 K. pneumonia strains were isolated from different samples. In total, 128 of the 300 isolates were confirmed as potential ESBLs producers as follows: 107 (43.67%) E. coli and 21 (38.18%) K. pneumonia. ESBLs genes were found in 24 isolates (18.75%): 21 E. coli and 3 K. pneumonia isolates. The TEM gene was present in 13 (12.14%) E. coli strains, but it was not detected in K. pneumonia. In addition, the SHV gene was present in 8 (7.47%) E. coli and 3 (14.28%) K. pneumonia isolates. Five (4.67%) of the E. coli isolates harbored both TEM and SHV genes. All isolates (100%) were susceptible to imipenem. The lowest rates of resistance to other antibiotics were observed for; piperacillin-tazobactam (6.25%), amikacin (12.5%) and gentamicin (14.84%). The rates of resistance to other antibiotics were as follow: nitrofurantoin (16.4%), nalidixic acid (23.43), co-trimoxazole (25%), cefepime (32%), ciprofloxacin (55.46%), ampicillin (69.53%), ceftazidime (100%), and cefotaxime (100%).

          Conclusions:

          The results of this study indicate the widespread prevalence of ESBLs and multiple antibiotic resistance in E. coli and K. pneumoniae. Therefore, beta-lactam antibiotics and beta-lactamase inhibitors or carbapenems should be prescribed based on an antibacterial susceptibility test.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases.

          A huge variety of extended-spectrum beta-lactamases (ESBLs) have been detected during the last 20 years. The majority of these have been of the TEM or SHV lineage. We have assessed ESBLs occurring among a collection of 455 bloodstream isolates of Klebsiella pneumoniae, collected from 12 hospitals in seven countries. Multiple beta-lactamases were produced by isolates with phenotypic evidence of ESBL production (mean of 2.7 beta-lactamases per isolate; range, 1 to 5). SHV-type ESBLs were the most common ESBL, occurring in 67.1% (49 of 73) of isolates with phenotypic evidence of ESBL production. In contrast, TEM-type ESBLs (TEM-10 type, -12 type, -26 type, and -63 type) were found in just 16.4% (12 of 73) of isolates. The finding of TEM-10 type and TEM-12 type represents the first detection of a TEM-type ESBL in South America. PER (for Pseudomonas extended resistance)-type beta-lactamases were detected in five of the nine isolates from Turkey and were found with SHV-2-type and SHV-5-type ESBLs in two of the isolates. CTX-M-type ESBLs (bla(CTX-M-2) type and bla(CTX-M-3) type) were found in 23.3% (17 of 73) of isolates and were found in all study countries except for the United States. We also detected CTX-M-type ESBLs in four countries where they have previously not been described-Australia, Belgium, Turkey, and South Africa. The widespread emergence and proliferation of CTX-M-type ESBLs is particularly noteworthy and may have important implications for clinical microbiology laboratories and for physicians treating patients with serious K. pneumoniae infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular characterization and epidemiology of extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic.

            Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae have rapidly spread worldwide and pose a serious threat for health care-associated (HA) infection. We conducted molecular detection and characterization of ESBL-related bla genes, including bla(TEM), bla(SHV), bla(CTX-M), bla(VEB), bla(OXA), bla(PER), and bla(GES), among 362 isolates of ESBL-producing E. coli (n = 235) and ESBL-producing K. pneumoniae (n = 127) collected from patients who met the definition of HA infection at two major university hospitals in Thailand from December 2004 to May 2005. The prevalence of ESBL-producing E. coli and ESBL-producing K. pneumoniae, patient demographics and the susceptibilities of these bacteria to various antimicrobial agents were described. A total of 87.3% of isolates carried several bla genes. The prevalence of bla(CTX-M) was strikingly high: 99.6% for ESBL-producing E. coli (CTX-M-14, -15, -27, -40, and -55) and 99.2% for ESBL-producing K. pneumoniae (CTX-M-3, -14, -15, -27, and -55). ISEcp1 was found in the upstream region of bla(CTX-M) in most isolates. Up to 77.0% and 71.7% of ESBL-producing E. coli and ESBL-producing K. pneumoniae, respectively, carried bla(TEM); all of them encoded TEM-1. ESBL-producing K. pneumoniae carried bla(SHV) at 87.4% (SHV-1, -2a, -11, -12, -27, -71, and -75) but only at 3.8% for ESBL-producing E. coli (SHV-11 and -12). bla genes encoding VEB-1 and OXA-10 were found in both ESBL-producing E. coli (8.5% and 8.1%, respectively) and ESBL-producing K. pneumoniae (10.2% and 11.8%, respectively). None of the isolates were positive for bla(PER) and bla(GES). Pulsed-field gel electrophoresis analysis demonstrated that there was no major clonal relationship among these ESBL producers. This is the first study to report CTX-M-3, CTX-M-27, CTX-M-40, SHV-27, SHV-71, and SHV-75 in Thailand and to show that CTX-M ESBL is highly endemic in the country.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran.

              Extended-spectrum beta-lactamase (ESBL)-producing isolates of Klebsiella pneumoniae have been increasingly recognized in the hospital settings in Iran as well as throughout the world. The aim of this study was to detect and determine the genes encoding the ESBLs including bla(TEM), bla(SHV), and bla(CTX-M) groups among the K. pneumoniae isolates at Labbafinejad Hospital by polymerase chain reaction (PCR) and characterize them by direct sequencing of PCR products. Eighty-nine isolates were isolated from patients at different wards during March 2008-March 2009. They were identified as K. pneumoniae using biochemical tests. Susceptibility of isolates to 17 different antimicrobial agents was determined using agar disk diffusion method. The phenotypic confirmatory test was used to screen the isolates for production of ESBLs. To amplify the bla(SHV) the template DNA was extracted by boiling method. Plasmid DNA was extracted using minipreparation kit and used as template in PCR for detection of bla(TEM) and bla(CTX-M). The selected PCR products were sequenced and analyzed. All 89 strains were susceptible to imipenem. The rates of resistance to different antibiotics were in the following order: aztronam (79.7%), cefexime (67.4%), cefpodoxime (66.2%), cefotaxime (65.1%), ceftazidime (61.7%). The phenotypic confirmatory test detected 62 isolates (69.7%) as ESBL-producing K. pneumoniae. The prevalence of genes encoding ESBLs were as follows: bla(TEM) 54% (n = 48), bla(SHV) 67.4% (n = 60), bla(CTX-M-I) 46.51% (n = 40), and bla(CTX-M-III) 29% (n = 25). The bla(CTX-M-II) and bla(CTX-M-IV) were not detected. All bla(TEM) types were characterized as bla(TEM-1) and all bla(CTX-M-I) were identified as bla(CTX-M-15). The SHV types were characterized as SHV-5, SHV-11, and SHV-12. The rate of ESBL at Labbafinejad Hospital was 25% increase in a 4-year study that ended in March 2009. It appears that bla(TEM-1), bla(SHV-5), bla(SHV-11), bla(SHV-12), and bla(CTX-M-15) are the dominant ESBLs among the resistant strains of K. pneumoniae in Iran.
                Bookmark

                Author and article information

                Journal
                Jundishapur J Microbiol
                Jundishapur J Microbiol
                10.5812/jjm
                Kowsar
                Jundishapur Journal of Microbiology
                Kowsar
                2008-3645
                2008-4161
                01 October 2014
                October 2014
                : 7
                : 10
                : e11758
                Affiliations
                [1 ]Department of Microbiology and Immunology, Cellular and Molecular Research center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
                [2 ]Department of Pathology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran
                [3 ]Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
                [4 ]Department of Microbiology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran
                Author notes
                [* ]Corresponding author: Azar Baradaran, Department of Pathology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran. Tel: +98-3116691565, Fax: +98-3116684510, E-mail: azarbaradaran@ 123456yahoo.com
                Article
                10.5812/jjm.11758
                4295312
                25632322
                95498620-5ebe-4528-a766-cbec36f8fd98
                Copyright © 2014, Ahvaz Jundishapur University of Medical Sciences; Published by Kowsar Corp.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 July 2013
                : 08 September 2014
                : 04 September 2013
                Categories
                Research Article

                phenotypic,molecular,extended-spectrum β-lactamase (esbl),escherichia coli,klebsiella pneumonia

                Comments

                Comment on this article