82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterologous expression of a putative manganese superoxide dismutase gene ( SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named Mp SOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of Mp SOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of Mp SOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the Mp SOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Markers, Natural History and Evolution

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE.

            Rapid generation of superoxide and accumulation of H2O2 is a characteristic early feature of the hypersensitive response following perception of pathogen avirulence signals. Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils. The oxidants are not only direct protective agents, but H2O2 also functions as a substrate for oxidative cross-linking in the cell wall, as a threshold trigger for hypersensitive cell death, and as a diffusible signal for induction of cellular protectant genes in surrounding cells. Activation of the oxidative burst is a central component of a highly amplified and integrated signal system, also involving salicylic acid and perturbations of cytosolic Ca2+, which underlies the expression of disease-resistance mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression.

              Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Three unique and highly compartmentalized mammalian superoxide dismutases have been biochemically and molecularly characterized to date. SOD1, or CuZn-SOD (EC 1.15.1.1), was the first enzyme to be characterized and is a copper and zinc-containing homodimer that is found almost exclusively in intracellular cytoplasmic spaces. SOD2, or Mn-SOD (EC 1.15.1.1), exists as a tetramer and is initially synthesized containing a leader peptide, which targets this manganese-containing enzyme exclusively to the mitochondrial spaces. SOD3, or EC-SOD (EC 1.15.1.1), is the most recently characterized SOD, exists as a copper and zinc-containing tetramer, and is synthesized containing a signal peptide that directs this enzyme exclusively to extracellular spaces. What role(s) these SODs play in both normal and disease states is only slowly beginning to be understood. A molecular understanding of each of these genes has proven useful toward the deciphering of their biological roles. For example, a variety of single amino acid mutations in SOD1 have been linked to familial amyotrophic lateral sclerosis. Knocking out the SOD2 gene in mice results in a lethal cardiomyopathy. A single amino acid mutation in human SOD3 is associated with 10 to 30-fold increases in serum SOD3 levels. As more information is obtained, further insights will be gained.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                01 June 2015
                June 2015
                : 16
                : 6
                : 12324-12344
                Affiliations
                [1 ]Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil; E-Mails: scmelo@ 123456uesc.br (S.C.M.); anaclarame@ 123456hotmail.com (A.C.M.); bellefp@ 123456gmail.com (A.C.F.P.); martinbrendel@ 123456yahoo.com.br (M.B.)
                [2 ]Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia (UESB), Estrada do Bem Querer, km 4, Vitória da Conquista, Bahia CEP 45083-900, Brazil; E-Mail: sxneide@ 123456gmail.com
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: cpungartnik@ 123456yahoo.com.br ; Tel.: +55-73-3680-5438; Fax: +55-73-3680-5105.
                Article
                ijms-16-12324
                10.3390/ijms160612324
                4490446
                26039235
                9557d371-8958-4235-81fe-b1f8b270ce9b
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 December 2014
                : 08 April 2015
                Categories
                Article

                Molecular biology
                reactive oxygen species,manganese superoxide dismutase,functional heterologous expression,diethylnitrosamine super-sensitivity

                Comments

                Comment on this article