6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      August 2010 Letters to the Editor-in-Chief

      , ,
      Journal of Orthopaedic & Sports Physical Therapy
      Journal of Orthopaedic & Sports Physical Therapy (JOSPT)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The influence of abnormal hip mechanics on knee injury: a biomechanical perspective.

          During the last decade, there has been a growing body of literature suggesting that proximal factors may play a contributory role with respect to knee injuries. A review of the biomechanical and clinical studies in this area indicated that impaired muscular control of the hip, pelvis, and trunk can affect tibiofemoral and patellofemoral joint kinematics and kinetics in multiple planes. In particular, there is evidence that motion impairments at the hip may underlie injuries such as anterior cruciate ligament tears, iliotibial band syndrome, and patellofemoral joint pain. In addition, the literature suggests that females may be more disposed to proximal influences than males. Based on the evidence presented as part of this clinical commentary, it can be argued that interventions which address proximal impairments may be beneficial for patients who present with various knee conditions. More specifically, a biomechanical argument can be made for the incorporation of pelvis and trunk stability, as well as dynamic hip joint control, into the design of knee rehabilitation programs. Aetiology/therapy, level 5.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model.

            Prior studies suggest manual therapy (MT) as effective in the treatment of musculoskeletal pain; however, the mechanisms through which MT exerts its effects are not established. In this paper we present a comprehensive model to direct future studies in MT. This model provides visualization of potential individual mechanisms of MT that the current literature suggests as pertinent and provides a framework for the consideration of the potential interaction between these individual mechanisms. Specifically, this model suggests that a mechanical force from MT initiates a cascade of neurophysiological responses from the peripheral and central nervous system which are then responsible for the clinical outcomes. This model provides clear direction so that future studies may provide appropriate methodology to account for multiple potential pertinent mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study.

              Female athletes are at significantly greater risk of anterior cruciate ligament (ACL) injury than male athletes in the same high-risk sports. Decreased trunk (core) neuromuscular control may compromise dynamic knee stability. (1) Increased trunk displacement after sudden force release would be associated with increased knee injury risk; (2) coronal (lateral), not sagittal, plane displacement would be the strongest predictor of knee ligament injury; (3) logistic regression of factors related to core stability would accurately predict knee, ligament, and ACL injury risk; and (4) the predictive value of these models would differ between genders. Cohort study (prognosis); Level of evidence, 2. In this study, 277 collegiate athletes (140 female and 137 male) were prospectively tested for trunk displacement after a sudden force release. Analysis of variance and multivariate logistic regression identified predictors of risk in athletes who sustained knee injury. Twenty-five athletes (11 female and 14 male) sustained knee injuries over a 3-year period. Trunk displacement was greater in athletes with knee, ligament, and ACL injuries than in uninjured athletes (P < .05). Lateral displacement was the strongest predictor of ligament injury (P = .009). A logistic regression model, consisting of trunk displacements, proprioception, and history of low back pain, predicted knee ligament injury with 91% sensitivity and 68% specificity (P = .001). This model predicted knee, ligament, and ACL injury risk in female athletes with 84%, 89%, and 91% accuracy, but only history of low back pain was a significant predictor of knee ligament injury risk in male athletes. Factors related to core stability predicted risk of athletic knee, ligament, and ACL injuries with high sensitivity and moderate specificity in female, but not male, athletes.
                Bookmark

                Author and article information

                Journal
                Journal of Orthopaedic & Sports Physical Therapy
                J Orthop Sports Phys Ther
                Journal of Orthopaedic & Sports Physical Therapy (JOSPT)
                0190-6011
                1938-1344
                August 2010
                August 2010
                : 40
                : 8
                Article
                10.2519/jospt.2010.0201
                9559c95b-6526-420e-b482-118dc422d898
                © 2010
                History

                Comments

                Comment on this article