3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Biotechnology in Specific Spoilage Organisms of Aquatic Products

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aquatic products are delicious and have high nutritive value, however, they are highly perishable during storage due to the growth and metabolism of microorganisms. The spoilage process of aquatic products was demonstrated to be highly related to the composition of microorganisms, in which the specific spoilage organisms (SSOs) are the main factors. In this article, the spoilage indicators of SSOs were systematically described, which could make a comprehensive evaluation of the quality of aquatic products. Quorum sensing (QS) regulates the growth, metabolism and characteristics of SSOs, the common signaling molecules and the QS system in the major SSOs of aquatic products were discussed. Moreover, we compared various technologies for the analysis of SSOs in aquatic products. Besides, quality control techniques based on microbiota regulating of aquatic products, including physical, chemical and biological preservation strategies, were also compared. In conclusion, novel preservation technologies and hurdle techniques are expected to achieve comprehensive inhibition of SSOs.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Quorum sensing: cell-to-cell communication in bacteria.

          Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers . This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA

            We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                28 April 2022
                2022
                : 10
                : 895283
                Affiliations
                [1] 1 Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin, China
                [2] 2 University of Chinese Academy of Sciences , Beijing, China
                Author notes

                Edited by: Yuan Lu, Tsinghua University, China

                Reviewed by: Sarangam Majumdar, University of L’Aquila, Italy

                Bhagwan Rekadwad, Yenepoya University, India

                *Correspondence: Dawei Zhang, zhang_dw@ 123456tib.cas.cn

                This article was submitted to Synthetic Biology, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                895283
                10.3389/fbioe.2022.895283
                9095962
                35573247
                9565bb0f-fd21-42ed-98bf-c67d489878ce
                Copyright © 2022 Dong, Gai, Fu and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 March 2022
                : 28 March 2022
                Categories
                Bioengineering and Biotechnology
                Review

                specific spoilage organisms,aquatic products,spoilage indicator,quorum sensing,preservation strategies

                Comments

                Comment on this article