36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fatigue is defined as a condition or phenomenon of decreased ability and efficiency of mental and/or physical activities, caused by excessive mental or physical activities, diseases, or syndromes. It is often accompanied by a peculiar sense of discomfort, a desire to rest, and reduced motivation, referred to as fatigue sensation. Acute fatigue is a normal condition or phenomenon that disappears after a period of rest; in contrast, chronic fatigue, lasting at least 6 months, does not disappear after ordinary rest. Chronic fatigue impairs activities and contributes to various medical conditions, such as cardiovascular disease, epileptic seizures, and death. In addition, many people complain of chronic fatigue. For example, in Japan, more than one third of the general adult population complains of chronic fatigue. It would thus be of great value to clarify the mechanisms underlying chronic fatigue and to develop efficient treatment methods to overcome it. Here, we review data primarily from behavioral, electrophysiological, and neuroimaging experiments related to neural dysfunction as well as autonomic nervous system, sleep, and circadian rhythm disorders in fatigue. These data provide new perspectives on the mechanisms underlying chronic fatigue and on overcoming it.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Empathy for pain involves the affective but not sensory components of pain.

          Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Storage and executive processes in the frontal lobes.

            The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust.

              What neural mechanism underlies the capacity to understand the emotions of others? Does this mechanism involve brain areas normally involved in experiencing the same emotion? We performed an fMRI study in which participants inhaled odorants producing a strong feeling of disgust. The same participants observed video clips showing the emotional facial expression of disgust. Observing such faces and feeling disgust activated the same sites in the anterior insula and to a lesser extent in the anterior cingulate cortex. Thus, as observing hand actions activates the observer's motor representation of that action, observing an emotion activates the neural representation of that emotion. This finding provides a unifying mechanism for understanding the behaviors of others.
                Bookmark

                Author and article information

                Contributors
                masa-t@msic.med.osaka-cu.ac.jp
                +81-78-304-7100 , yywata@riken.jp
                Journal
                J Physiol Sci
                J Physiol Sci
                The Journal of Physiological Sciences
                Springer Japan (Tokyo )
                1880-6546
                1880-6562
                29 September 2015
                29 September 2015
                2015
                : 65
                : 6
                : 483-498
                Affiliations
                [ ]Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 Japan
                [ ]Hyogo Children’s Sleep and Development Medical Research Center, Hyogo Rehabilitation Centre, Central Hospital 1070 Akebono-cho, Nishi-ku, Kobe, Hyogo 651-2181 Japan
                [ ]RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
                Article
                399
                10.1007/s12576-015-0399-y
                4621713
                26420687
                9566dbf3-efeb-4186-8ea1-2fefbc82bf85
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 30 August 2015
                : 1 September 2015
                Categories
                Review
                Custom metadata
                © The Physiological Society of Japan and Springer Japan 2015

                Anatomy & Physiology
                autonomic nervous system,central nervous system,circadian rhythm,fatigue,sleep

                Comments

                Comment on this article