23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neural ensemble dynamics underlying a long-term associative memory

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The brain’s ability to associate different stimuli is vital to long-term memory, but how neural ensembles encode associative memories is unknown. Here we studied how cell ensembles in the basal and lateral amygdala (BLA) encode associations between conditioned and unconditioned stimuli (CS, US). Using a miniature fluorescence microscope, we tracked BLA ensemble neural Ca 2+ dynamics during fear learning and extinction over six days in behaving mice. Fear conditioning induced both up- and down-regulation of individual cells’ CS-evoked responses. This bi-directional plasticity mainly occurred after conditioning and reshaped the CS ensemble neural representation to gain similarity to the US-representation. During extinction training with repetitive CS presentations, the CS-representation became more distinctive without reverting to its original form. Throughout, the strength of the ensemble-encoded CS-US association predicted each mouse’s level of behavioral conditioning. These findings support a supervised learning model in which activation of the US-representation guides the transformation of the CS-representation.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Ultra-sensitive fluorescent proteins for imaging neuronal activity

          Summary Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The importance of mixed selectivity in complex cognitive tasks.

            Single-neuron activity in the prefrontal cortex (PFC) is tuned to mixtures of multiple task-related aspects. Such mixed selectivity is highly heterogeneous, seemingly disordered and therefore difficult to interpret. We analysed the neural activity recorded in monkeys during an object sequence memory task to identify a role of mixed selectivity in subserving the cognitive functions ascribed to the PFC. We show that mixed selectivity neurons encode distributed information about all task-relevant aspects. Each aspect can be decoded from the population of neurons even when single-cell selectivity to that aspect is eliminated. Moreover, mixed selectivity offers a significant computational advantage over specialized responses in terms of the repertoire of input-output functions implementable by readout neurons. This advantage originates from the highly diverse nonlinear selectivity to mixtures of task-relevant variables, a signature of high-dimensional neural representations. Crucially, this dimensionality is predictive of animal behaviour as it collapses in error trials. Our findings recommend a shift of focus for future studies from neurons that have easily interpretable response tuning to the widely observed, but rarely analysed, mixed selectivity neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term dynamics of CA1 hippocampal place codes

              Via Ca2+-imaging in freely behaving mice that repeatedly explored a familiar environment, we tracked thousands of CA1 pyramidal cells' place fields over weeks. Place coding was dynamic, for each day the ensemble representation of this environment involved a unique subset of cells. Yet, cells within the ∼15–25% overlap between any two of these subsets retained the same place fields, which sufficed to preserve an accurate spatial representation across weeks.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                17 February 2017
                22 March 2017
                30 March 2017
                22 September 2017
                : 543
                : 7647
                : 670-675
                Affiliations
                [1 ]James H. Clark Center for Biomedical Engineering & Sciences, Stanford, CA
                [2 ]Howard Hughes Medical Institute, Stanford, CA
                [3 ]CNC Program, Stanford University, Stanford, CA
                [4 ]Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
                [5 ]Pfizer Neuroscience Research, Cambridge, MA
                [6 ]University of Basel, Basel, Switzerland
                Author notes
                Correspondence and requests for materials should be addressed to mschnitz@ 123456stanford.edu .
                Article
                EMS71387
                10.1038/nature21682
                5378308
                28329757
                956828a5-2e4f-4f10-a153-df119bddd812

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article