3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluid Shear Stress Increases Neutrophil Activation via Platelet-Activating Factor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to reduce neutrophil activation in the presence of the chemoattractant formyl-methionyl-leucyl-phenylalanine. Here, however, human neutrophil preexposure to uniform shear stress (0.1–2.75 dyn/cm 2) in a cone-and-plate viscometer for 1–120 min was shown to increase, rather than decrease, neutrophil activation in the presence of platelet activating factor (PAF). Fluid shear stress exposure increased PAF-induced neutrophil activation in terms of L-selectin shedding, α M β 2 integrin activation, and morphological changes. Neutrophil activation via PAF was found to correlate with fluid shear stress exposure, as neutrophil activation increased in a shear stress magnitude- and time-dependent manner. These results indicate that fluid shear stress exposure increases neutrophil activation by PAF, and, taken together with previous observations, differentially controls how neutrophils respond to chemoattractants.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet-activating factor and related lipid mediators.

          Platelet-activating factor (PAF) is a phospholipid with potent, diverse physiological actions, particularly as a mediator of inflammation. The synthesis, transport, and degradation of PAF are tightly regulated, and the biochemical basis for many of these processes has been elucidated in recent years. Many of the actions of PAF can be mimicked by structurally related phospholipids that are derived from nonenzymatic oxidation, because such compounds can bind to the PAF receptor. This process circumvents much of the biochemical control and presumably is regulated primarily by the rate of degradation, which is catalyzed by PAF acetylhydrolase. The isolation of cDNA clones encoding most of the key proteins involved in regulating PAF has allowed substantial recent progress and will facilitate studies to determine the structural basis for substrate specificity and the precise role of PAF in physiological events.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis.

            Platelet-activating factor (PAF) is an important mediator of anaphylaxis in animals, and interventions that block PAF prevent fatal anaphylaxis. The roles of PAF and PAF acetylhydrolase, the enzyme that inactivates PAF, in anaphylaxis in humans have not been reported. We measured serum PAF levels and PAF acetylhydrolase activity in 41 patients with anaphylaxis and in 23 control patients. Serum PAF acetylhydrolase activity was also measured in 9 patients with peanut allergy who had fatal anaphylaxis and compared with that in 26 nonallergic pediatric control patients, 49 nonallergic adult control patients, 63 children with mild peanut allergy, 24 patients with nonfatal anaphylaxis, 10 children who died of nonanaphylactic causes, 15 children with life-threatening asthma, and 19 children with non-life-threatening asthma. Mean (+/-SD) serum PAF levels were significantly higher in patients with anaphylaxis (805+/-595 pg per milliliter) than in patients in the control groups (127+/-104 pg per milliliter, P<0.001 after log transformation) and were correlated with the severity of anaphylaxis. The proportion of subjects with elevated PAF levels increased from 4% in the control groups to 20% in the group with grade 1 anaphylaxis, 71% in the group with grade 2 anaphylaxis, and 100% in the group with grade 3 anaphylaxis (P<0.001). There was an inverse correlation between PAF levels and PAF acetylhydrolase activity (P<0.001). The proportion of patients with low PAF acetylhydrolase values increased with the severity of anaphylaxis (P<0.001 for all comparisons). Serum PAF acetylhydrolase activity was significantly lower in patients with fatal peanut anaphylaxis than in control patients (P values <0.001 for all comparisons). Serum PAF levels were directly correlated and serum PAF acetylhydrolase activity was inversely correlated with the severity of anaphylaxis. PAF acetylhydrolase activity was significantly lower in patients with fatal anaphylactic reactions to peanuts than in patients in any of the control groups. Failure of PAF acetylhydrolase to inactivate PAF may contribute to the severity of anaphylaxis. Copyright 2008 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRAIL-coated leukocytes that kill cancer cells in the circulation.

              Metastasis through the bloodstream contributes to poor prognosis in many types of cancer. Mounting evidence implicates selectin-based adhesive interactions between cancer cells and the blood vessel wall as facilitating this process, in a manner similar to leukocyte trafficking during inflammation. Here, we describe a unique approach to target and kill colon and prostate cancer cells in the blood that causes circulating leukocytes to present the cancer-specific TNF-related apoptosis inducing ligand (TRAIL) on their surface along with E-selectin adhesion receptor. This approach, demonstrated in vitro with human blood and also in mice, mimics the cytotoxic activity of natural killer cells and increases the surface area available for delivery of the receptor-mediated signal. The resulting "unnatural killer cells" hold promise as an effective means to neutralize circulating tumor cells that enter blood with the potential to form new metastases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biophys J
                Biophys. J
                Biophysical Journal
                The Biophysical Society
                0006-3495
                1542-0086
                20 May 2014
                : 106
                : 10
                : 2243-2253
                Affiliations
                [1]Department of Biomedical Engineering, Cornell University, Ithaca, New York
                Author notes
                []Corresponding author mike.king@ 123456cornell.edu
                Article
                S0006-3495(14)00345-2
                10.1016/j.bpj.2014.04.001
                4052238
                24853753
                956e2ce0-8d57-4a20-bcfd-ed495e6e8614
                © 2014 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

                History
                : 4 November 2013
                : 1 April 2014
                Categories
                Systems Biophysics

                Biophysics
                Biophysics

                Comments

                Comment on this article