17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of FOXO3 Tumor Suppressor Function by βTrCP1 through Ubiquitin-Mediated Degradation in a Tumor Mouse Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The ubiquitin-proteasome system is the primary proteolysis machine for controlling protein stability of the majority of regulatory proteins including those that are critical for cancer development. The forkhead box transcription factor FOXO3 plays a key role in regulating tumor suppression; however, the control of FOXO3 protein stability remains to be established. It is crucial to elucidate the molecular mechanisms underlying the ubiquitin-mediated degradation of FOXO3 tumor suppressor.

          Methodology and Principal Findings

          Here we show that βTrCP1 oncogenic ubiquitin E3-ligase interacts with FOXO3 and induces its ubiquitin-dependent degradation in an IκB kinase-β phosphorylation dependent manner. Silencing βTrCP1 augments FOXO3 protein level, resulting in promoting cellular apoptosis in cancer cells. In animal models, increasing FOXO3 protein level by silencing βTrCP1 suppresses tumorigenesis, whereas decreasing FOXO3 by over-expressing βTrCP1 promotes tumorigenesis and tumor growth in vivo.

          Conclusions/Significance

          This is a unique demonstration that the βTrCP1-mediated FOXO3 degradation plays a crucial role in tumorigenesis. These findings significantly contribute to understanding of the control of FOXO3 stability in cancer cells and may provide opportunities for developing innovative anticancer therapeutic modalities.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Foxo3a is essential for maintenance of the hematopoietic stem cell pool.

          Hematopoietic stem cells (HSCs) are maintained in an undifferentiated quiescent state within a bone marrow niche. Here we show that Foxo3a, a forkhead transcription factor that acts downstream of the PTEN/PI3K/Akt pathway, is critical for HSC self-renewal. We generated gene-targeted Foxo3a(-/-) mice and showed that, although the proliferation and differentiation of Foxo3a(-/-) hematopoietic progenitors were normal, the number of colony-forming cells present in long-term cocultures of Foxo3a(-/-) bone marrow cells and stromal cells was reduced. The ability of Foxo3a(-/-) HSCs to support long-term reconstitution of hematopoiesis in a competitive transplantation assay was also impaired. Foxo3a(-/-) HSCs also showed increased phosphorylation of p38MAPK, an elevation of ROS, defective maintenance of quiescence, and heightened sensitivity to cell-cycle-specific myelotoxic injury. Finally, HSC frequencies were significantly decreased in aged Foxo3a(-/-) mice compared to the littermate controls. Our results demonstrate that Foxo3a plays a pivotal role in maintaining the HSC pool.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FOXOs, cancer and regulation of apoptosis.

            Forkhead box O (FOXO) transcription factors are involved in multiple signaling pathways and play critical roles in a number of physiological and pathological processes including cancer. The importance of FOXO factors ascribes them under multiple levels of regulation including phosphorylation, acetylation/deacetylation, ubiquitination and protein-protein interactions. As FOXO factors play a pivotal role in cell fate decision, mounting evidence suggests that FOXO factors function as tumor suppressors in a variety of cancers. FOXOs are actively involved in promoting apoptosis in a mitochondria-independent and -dependent manner by inducing the expression of death receptor ligands, including Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand, and Bcl-2 family members, such as Bim, bNIP3 and Bcl-X(L), respectively. An understanding of FOXO proteins and their biology will provide new opportunities for developing more effective therapeutic approaches to treat cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein.

              The signaling pathway from phosphoinositide 3-kinase to the protein kinase Akt controls organismal life-span in invertebrates and cell survival and proliferation in mammals by inhibiting the activity of members of the FOXO family of transcription factors. We show that mammalian FOXO3a also functions at the G2 to M checkpoint in the cell cycle and triggers the repair of damaged DNA. By gene array analysis, FOXO3a was found to modulate the expression of several genes that regulate the cellular response to stress at the G2-M checkpoint. The growth arrest and DNA damage response gene Gadd45a appeared to be a direct target of FOXO3a that mediates part of FOXO3a's effects on DNA repair. These findings indicate that in mammals FOXO3a regulates the resistance of cells to stress by inducing DNA repair and thereby may also affect organismal life-span.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                2 July 2010
                : 5
                : 7
                : e11171
                Affiliations
                [1 ]Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
                [2 ]Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, California, United States of America
                [3 ]Department of Medicine, Albert Einstein College of Medicine, New York, New York, United States of America
                [4 ]Department of Pediatrics-Infectious Disease, Baylor College of Medicine, Houston, Texas, United States of America
                [5 ]Division of Developmental Genetics, Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, Miyagi, Japan
                Garvan Institute of Medical Research, Australia
                Author notes

                Conceived and designed the experiments: WBT YMC MCTH. Performed the experiments: WBT YMC YZ SHP ZX MCTH. Analyzed the data: WBT YMC YZ SHP MCTH. Contributed reagents/materials/analysis tools: YMC ZX KN MCTH. Wrote the paper: YMC SHL MCTH.

                Article
                09-PONE-RA-12418R1
                10.1371/journal.pone.0011171
                2896402
                20625400
                95717084-70ad-4c93-851d-cb7c04fb78db
                Tsai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 August 2009
                : 16 May 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Cell Biology/Cell Signaling
                Cell Biology/Cellular Death and Stress Responses
                Molecular Biology/Post-Translational Regulation of Gene Expression
                Oncology/Breast Cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article