33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Benchmarking electrophysiological models of human atrial myocytes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats.

          In this study we tested the hypothesis that atrial fibrillation (AF) causes electrophysiological changes of the atrial myocardium which might explain the progressive nature of the arrhythmia. Twelve goats were chronically instrumented with multiple electrodes sutured to the epicardium of both atria. Two to 3 Weeks after implantation, the animals were connected to a fibrillation pacemaker which artificially maintained AF. Whereas during control episodes of AF were short lasting (6 +/- 3 seconds), artificial maintenance of AF resulted in a progressive increase in the duration of AF to become sustained (> 24 hours) after 7.1 +/- 4.8 days (10 of 11 goats). During the first 24 hours of AF the median fibrillation interval shortened from 145 +/- 18 to 108 +/- 8 ms and the inducibility of AF by a single premature stimulus increased from 24% to 76%. The atrial effective refractory period (AERP) shortened from 146 +/- 19 to 95 +/- 20 ms (-35%) (S1S1, 400 ms). At high pacing rates the shortening was less (-12%), pointing to a reversion of the normal adaptation of the AERP to heart rate. In 5 goats, after 2 to 4 weeks of AF, sinus rhythm was restored and all electrophysiological changes were found to be reversible within 1 week. Artificial maintenance of AF leads to a marked shortening of AERP, a reversion of its physiological rate adaptation, and an increase in rate, inducibility and stability of AF. All these changes were completely reversible within 1 week of sinus rhythm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ionic mechanisms of electrical remodeling in human atrial fibrillation.

            Atrial fibrillation (AF) is associated with a decrease in atrial ERP and ERP adaptation to rate as well as changes in atrial conduction velocity. The cellular changes in repolarization and the underlying ionic mechanisms in human AF are only poorly understood. Action potentials (AP) and ionic currents were studied with the patch clamp technique in single atrial myocytes from patients in chronic AF and compared to those from patients in stable sinus rhythm (SR). The presence of AF was associated with a marked shortening of the AP duration and a decreased rate response of atrial repolarization. L-type calcium current (ICa,L) and the transient outward current (Ito) were both reduced about 70% in AF, whereas an increased steady-state outward current was detectable at test potentials between -30 and 0 mV. The inward rectifier potassium current (IKI) and the acetylcholine-activated potassium current (IKACh) were increased in AF at hyperpolarizing potentials. Voltage-dependent inactivation of the fast sodium current (INa) was shifted to more positive voltages in AF. AF in humans leads to important changes in atrial potassium and calcium currents that likely contribute to the decrease in APD and APD rate adaptation. These changes contribute to electrical remodeling in AF and are therefore important factors for the perpetuation of the arrhythmia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Verification of cardiac tissue electrophysiology simulators using an N-version benchmark.

              Ongoing developments in cardiac modelling have resulted, in particular, in the development of advanced and increasingly complex computational frameworks for simulating cardiac tissue electrophysiology. The goal of these simulations is often to represent the detailed physiology and pathologies of the heart using codes that exploit the computational potential of high-performance computing architectures. These developments have rapidly progressed the simulation capacity of cardiac virtual physiological human style models; however, they have also made it increasingly challenging to verify that a given code provides a faithful representation of the purported governing equations and corresponding solution techniques. This study provides the first cardiac tissue electrophysiology simulation benchmark to allow these codes to be verified. The benchmark was successfully evaluated on 11 simulation platforms to generate a consensus gold-standard converged solution. The benchmark definition in combination with the gold-standard solution can now be used to verify new simulation codes and numerical methods in the future.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                04 January 2013
                2012
                : 3
                : 487
                Affiliations
                [1] 1Institute of Biomedical Engineering, Karlsruhe Institute of Technology Karlsruhe, Germany
                [2] 2Center for Biomedical Computing, Simula Research Laboratory Lysaker, Norway
                [3] 3Center for Cardiological Innovation, Oslo University Hospital Oslo, Norway
                Author notes

                Edited by: Zbigniew R. Struzik, The University of Tokyo, Japan

                Reviewed by: Arun V. Holden, University of Leeds, UK; Alok R. Nayak, Indian Institute of Science, India

                *Correspondence: Mathias Wilhelms, Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany. e-mail: publications@ 123456ibt.kit.edu

                This article was submitted to Frontiers in Computational Physiology and Medicine, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2012.00487
                3539682
                23316167
                957615ce-b5d5-47f9-ad3d-52a2680fe557
                Copyright © 2013 Wilhelms, Hettmann, Maleckar, Koivumäki, Dössel and Seemann.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 12 October 2012
                : 14 December 2012
                Page count
                Figures: 7, Tables: 4, Equations: 0, References: 57, Pages: 16, Words: 12558
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                cardiac modeling,atrial electrophysiology,atrial fibrillation,long term stability,restitution properties

                Comments

                Comment on this article