18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A nonsense nucleotide substitution in the oculocutaneous albinism II gene underlies the original pink-eyed dilution allele ( Oca2 p ) in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The original pink-eyed dilution ( p) on chromosome 7 is a very old spontaneous mutation in mice. The oculocutaneous albinism II ( Oca2) gene has previously been identified as the p gene. Oca2 transcripts have been shown to be absent in the skin of SJL/J mice with the original p mutant allele ( Oca2 p ); however, the molecular genetic lesion underlying the original Oca2 p allele has never been reported. The NCT mouse (commonly known as Nakano cataract mouse) has a pink-eyed dilution phenotype, which prompted us to undertake a molecular genetic analysis of the Oca2 gene of this strain. Our genetic linkage analysis suggests that the locus for the pink-eyed dilution phenotype of NCT is tightly linked to the Oca2 locus. PCR cloning and nucleotide sequence analysis indicates that the NCT mouse has a nonsense nucleotide substitution at exon 7 of the Oca2 gene. Examination of three mouse strains (NZW/NSlc, SJL/J, and 129X1/SvJJmsSlc) with the original Oca2 p allele revealed the presence of a nonsense nucleotide substitution identical to that in the NCT strain. RT-PCR analysis revealed that the Oca2 transcripts were absent in the skin of NCT mice, suggesting intervention of the nonsense-mediated mRNA decay pathway. Collectively, the data in this study indicate that the nonsense nucleotide substitution in the Oca2 gene underlies the Oca2 p allele. Our data also indicate that the NCT mouse can be used not only as a cataract model, but also as a model for human type II oculocutaneous albinism.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins.

          Eumelanin and pheomelanin in tissue samples can be specifically measured as the markers pyrrole-2,3,5-tricarboxylic acid (PTCA) and 4-amino-3-hydroxyphenylalanine after acidic permanganate oxidation and hydroiodic acid hydrolysis, respectively. Those degradation methods, although widely applied, are not easily performed in most laboratories. To overcome this difficulty, we developed alkaline H(2)O(2) oxidation in 1 M K(2)CO(3) that produces, in addition to the eumelanin marker PTCA, thiazole-2,4,5-tricarboxylic acid (TTCA) and thiazole-4,5-dicarboxylic acid (TDCA) as markers for pheomelanin and pyrrole-2,3-dicarboxylic acid (PDCA) as a marker for 5,6-dihydroxyindole-derived eumelanin. Those four degradation products can be easily separated by HPLC and analyzed with ultraviolet detection. The alkaline H(2)O(2) oxidation method is simple, reproducible and applicable to all pigmented tissues. Its application to characterize eumelanin and pheomelanin in human hair shows that PTCA and TTCA serve as specific markers for eumelanin and pheomelanin, respectively, although some caution is needed regarding the artificial production of TTCA from eumelanic tissue proteins. © 2011 John Wiley & Sons A/S.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism type 2 (OCA2), and melanosomal pH.

            Recessive mutations of the mouse p (pink-eyed dilution) gene lead to hypopigmentation of the eyes, skin, and fur. Mice lacking a functional p protein have pink eyes and light gray fur (if non-agouti) or cream-colored fur (if agouti). The human orthologue is the P protein. Humans lacking a functional P protein have oculocutaneous albinism type 2 (OCA2). Melanocytes from p-deficient mice or OCA2 individuals contain small, minimally pigmented melanosomes. The mouse and human proteins are predicted to have 12 membrane spanning domains and possess significant sequence homology to a number of membrane transport proteins, some of which are involved in the transport of anions. The p protein has been localized to the melanosome membrane. Recently, it has been shown that melanosomes from p protein-deficient melanocytes have an abnormal pH. Melanosomes in cultured melanocytes derived from wild-type mice are typically acidic, whereas melanosomes from p protein-deficient mice are non-acidic. Melanosomes and related endosome-derived organelles (i.e., lysosomes) are thought to have an adenosine triphosphate (ATP)-driven proton pump that helps to generate an acidic lumen. To compensate for the charge of these protons, anions must also be transported to the lumen of the melanosome. In light of these observations, a model of p protein function is presented in which the p protein, together with the ATP-driven proton pump, regulates the pH of the melanosome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes.

              In past studies, we cloned the mouse p gene and its human homolog P, which is associated with oculocutaneous albinism type 2. Both mouse and human genes are expressed in melanocytes and encode proteins predicted to have 12 membrane-spanning domains with structural homology to known ion transporters. We have also demonstrated that the p protein is localized to the melanosomal membrane and does not function as a tyrosine transporter. In this study, immunohistochemistry and confocal microscopy were used to show that the p protein plays an important role in the generation or maintenance of melanosomal pH. Melanosomes (and their precursor compartments) were defined by antiserum directed against the melanosomal marker tyrosinase related protein 1. Acidic vesicles were identified by 3-(2, 4-dinitroanilino)-3'-amino-N-methyldipropylamine incorporation, visualized with anti-dinitrophenol. In C57BL/6+/+ (wild-type) melanocytes, 94.2% of vesicles demonstrated colocalization of tyrosinase related protein 1 and 3-(2, 4-dinitroanilino)-3'-amino-N-methyldipropylamine, indicating that almost all melanosomes or their precursors were acidic. By contrast, only 7%-8% of the staining vesicles in p mutant cell lines (pJ/pJ and pcp/p6H) showed colocalization of tyrosinase related protein 1 and 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine. Thus, without a functional p protein, most melanosomes and their precursors are not acidic. As mammalian tyrosinase activity in situ is apparently dependent on low pH, we postulate that in the absence of a low pH environment brought about by ionic transport mediated by the p protein, tyrosinase activity is severely impaired, leading to the minimal production of melanin that is characteristic of p mutants. Additionally (or alternatively), an abnormal pH may also impair the assembly of the normal melanogenic complex.
                Bookmark

                Author and article information

                Journal
                Exp Anim
                Exp. Anim
                EXPANIM
                Experimental Animals
                Japanese Association for Laboratory Animal Science
                1341-1357
                1881-7122
                22 January 2015
                2015
                : 64
                : 2
                : 171-179
                Affiliations
                [1) ]Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
                [2) ]Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
                [3) ]Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
                [4) ]Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
                Author notes
                Address corresponding: M. Mori, Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
                Article
                14-0075
                10.1538/expanim.14-0075
                4427732
                25736709
                957ccb81-4046-4e88-a809-dc6c137c78e1
                ©2015 Japanese Association for Laboratory Animal Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                History
                : 02 September 2014
                : 14 November 2014
                Categories
                Original

                mouse,nonsense mutation,oculocutaneous albinism ii,pink-eyed dilution

                Comments

                Comment on this article