7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IEDB-AR: immune epitope database—analysis resource in 2019

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Immune Epitope Database Analysis Resource (IEDB-AR, http://tools.iedb.org/) is a companion website to the IEDB that provides computational tools focused on the prediction and analysis of B and T cell epitopes. All of the tools are freely available through the public website and many are also available through a REST API and/or a downloadable command-line tool. A virtual machine image of the entire site is also freely available for non-commercial use and contains most of the tools on the public site. Here, we describe the tools and functionalities that are available in the IEDB-AR, focusing on the 10 new tools that have been added since the last report in the 2012 NAR webserver edition. In addition, many of the tools that were already hosted on the site in 2012 have received updates to newest versions, including NetMHC, NetMHCpan, BepiPred and DiscoTope. Overall, this IEDB-AR update provides a substantial set of updated and novel features for epitope prediction and analysis.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

          Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gapped sequence alignment using artificial neural networks: application to the MHC class I system.

            Many biological processes are guided by receptor interactions with linear ligands of variable length. One such receptor is the MHC class I molecule. The length preferences vary depending on the MHC allele, but are generally limited to peptides of length 8-11 amino acids. On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Improved method for predicting linear B-cell epitopes

              Background B-cell epitopes are the sites of molecules that are recognized by antibodies of the immune system. Knowledge of B-cell epitopes may be used in the design of vaccines and diagnostics tests. It is therefore of interest to develop improved methods for predicting B-cell epitopes. In this paper, we describe an improved method for predicting linear B-cell epitopes. Results In order to do this, three data sets of linear B-cell epitope annotated proteins were constructed. A data set was collected from the literature, another data set was extracted from the AntiJen database and a data sets of epitopes in the proteins of HIV was collected from the Los Alamos HIV database. An unbiased validation of the methods was made by testing on data sets on which they were neither trained nor optimized on. We have measured the performance in a non-parametric way by constructing ROC-curves. Conclusion The best single method for predicting linear B-cell epitopes is the hidden Markov model. Combining the hidden Markov model with one of the best propensity scale methods, we obtained the BepiPred method. When tested on the validation data set this method performs significantly better than any of the other methods tested. The server and data sets are publicly available at .
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                02 July 2019
                22 May 2019
                22 May 2019
                : 47
                : W1
                : W502-W506
                Affiliations
                [1 ]Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
                [2 ]Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
                [3 ]Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Argentina
                [4 ]Department of Medicine, University of California, San Diego, CA 92122, USA
                Author notes
                To whom correspondence should be addressed. Tel: +1 858 752 6914; Fax:+1 858 752 6987; Email: bpeters@ 123456lji.org

                The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

                Author information
                http://orcid.org/0000-0003-1381-7434
                http://orcid.org/0000-0003-2136-1801
                http://orcid.org/0000-0002-8036-2647
                http://orcid.org/0000-0003-2615-5695
                Article
                gkz452
                10.1093/nar/gkz452
                6602498
                31114900
                958ba9e3-1a55-4ac7-b1b5-cde97651d4bd
                © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 10 May 2019
                : 01 May 2019
                : 12 February 2019
                Page count
                Pages: 5
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: HHSN272201200010C
                Award ID: 75N93019C00001
                Categories
                Web Server Issue

                Genetics
                Genetics

                Comments

                Comment on this article