15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Akkermansia muciniphila and Its Pili-Like Protein Amuc_1100 Modulate Macrophage Polarization in Experimental Periodontitis

      , , , , ,
      Infection and Immunity
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Periodontitis is a chronic inflammatory disease triggered by dysbiosis of the oral microbiome. Porphyromonas gingivalis is strongly implicated in periodontal inflammation, gingival tissue destruction, and alveolar bone loss through sustained exacerbation of the host response. Recently, the use of other bacterial species, such as Akkermansia muciniphila, has been suggested to counteract inflammation elicited by P. gingivalis. In this study, the effects of A. muciniphila and its pili-like protein Amuc_1100 on macrophage polarization during P. gingivalis infection were evaluated in a murine model of experimental periodontitis. Mice were gavaged with P. gingivalis alone or in combination with A. muciniphila or Amuc_1100 for 6 weeks. Morphometric analysis demonstrated that the addition of A. muciniphila or Amuc_1100 significantly reduced P. gingivalis-induced alveolar bone loss. This decreased bone loss was associated with a proresolutive phenotype (M2) of macrophages isolated from submandibular lymph nodes as observed by flow cytometry. Furthermore, the expression of interleukin 10 (IL-10) at the RNA and protein levels was significantly increased in the gingival tissues of the mice and in macrophages exposed to A. muciniphila or Amuc_1100, confirming their anti-inflammatory properties. This study demonstrates the putative therapeutic interest of the administration of A. muciniphila or Amuc_1100 in the management of periodontitis through their anti-inflammatory properties.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Exploring the full spectrum of macrophage activation.

          Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.

            Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. The presence of this bacterium inversely correlates with body weight in rodents and humans. However, the precise physiological roles played by this bacterium during obesity and metabolic disorders are unknown. This study demonstrated that the abundance of A. muciniphila decreased in obese and type 2 diabetic mice. We also observed that prebiotic feeding normalized A. muciniphila abundance, which correlated with an improved metabolic profile. In addition, we demonstrated that A. muciniphila treatment reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance. A. muciniphila administration increased the intestinal levels of endocannabinoids that control inflammation, the gut barrier, and gut peptide secretion. Finally, we demonstrated that all these effects required viable A. muciniphila because treatment with heat-killed cells did not improve the metabolic profile or the mucus layer thickness. In summary, this study provides substantial insight into the intricate mechanisms of bacterial (i.e., A. muciniphila) regulation of the cross-talk between the host and gut microbiota. These results also provide a rationale for the development of a treatment that uses this human mucus colonizer for the prevention or treatment of obesity and its associated metabolic disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study

              Metabolic syndrome is characterized by a constellation of comorbidities that predispose individuals to an increased risk of developing cardiovascular pathologies as well as type 2 diabetes mellitus (T2DM) 1 . The gut microbiota is considered as a new key contributor involved in the onset of obesity-related disorders 2 . In humans, studies have provided evidence for a negative correlation between Akkermansia muciniphila abundance and overweight, obesity, untreated T2DM, or hypertension 3–8 . As the administration of A.muciniphila has never been investigated in humans, we conducted a randomized double-blind placebo-controlled pilot study in overweight/obese insulin resistant volunteers, 40 were enroled and 32 completed the trial. The primary endpoints were on safety, tolerability and metabolic parameters (i.e., insulin resistance, circulating lipids, visceral adiposity, body mass). The secondary outcomes were the gut barrier function (i.e., plasma lipopolysacharrides (LPS) and gut microbiota composition. In this single-center study, we demonstrated that daily oral supplementation of 1010 bacteria either alive or pasteurized A.muciniphila for 3 months was safe and well tolerated. Compared to the Placebo, pasteurized A.muciniphila improved insulin sensitivity (+28.62±7.02%, P=0.002), reduced insulinemia (-34.08±7.12%, P=0.006) and plasma total cholesterol (-8.68±2.38%, P=0.02). Pasteurized A.muciniphila supplementation slightly decreased body weight (-2.27±0.92kg, P=0.091) as compared to the Placebo group, and fat mass (-1.37±0.82kg, P=0.092) and hip circumference (-2.63±1.14cm, P = 0.091) as compared to baseline. After 3 months of supplementation, A.muciniphila reduced the levels of relevant blood markers of liver dysfunction and inflammation while the overall gut microbiome structure was unaffected. In conclusion, this proof-of-concept study (NCT02637115) shows that the intervention was safe and well-tolerated and that the supplementation with A.muciniphila improves several metabolic paramaters.
                Bookmark

                Author and article information

                Contributors
                Journal
                Infection and Immunity
                Infect. Immun.
                American Society for Microbiology
                0019-9567
                1098-5522
                December 15 2020
                December 15 2020
                December 15 2020
                October 05 2020
                : 89
                : 1
                : e00500-20
                Article
                10.1128/IAI.00500-20
                33020212
                9590e4f1-adb6-4673-b03a-4f46bf198d4b
                © 2020
                History

                Comments

                Comment on this article