10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression.

            Nutritional deprivation suppresses immune function. The cloning of the obese gene and identification of its protein product leptin has provided fundamental insight into the hypothalamic regulation of body weight. Circulating levels of this adipocyte-derived hormone are proportional to fat mass but maybe lowered rapidly by fasting or increased by inflammatory mediators. The impaired T-cell immunity of mice now known to be defective in leptin (ob/ob) or its receptor (db/db), has never been explained. Impaired cell-mediated immunity and reduced levels of leptin are both features of low body weight in humans. Indeed, malnutrition predisposes to death from infectious diseases. We report here that leptin has a specific effect on T-lymphocyte responses, differentially regulating the proliferation of naive and memory T cells. Leptin increased Th1 and suppressed Th2 cytokine production. Administration of leptin to mice reversed the immunosuppressive effects of acute starvation. Our findings suggest a new role for leptin in linking nutritional status to cognate cellular immune function, and provide a molecular mechanism to account for the immune dysfunction observed in starvation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A key role of leptin in the control of regulatory T cell proliferation.

              We report here that leptin can act as a negative signal for the proliferation of human naturally occurring Foxp3(+)CD4(+)CD25(+) regulatory T (T(reg)) cells. Freshly isolated T(reg) cells produced leptin and expressed high amounts of leptin receptor (ObR). In vitro neutralization with leptin monoclonal antibody (mAb), during anti-CD3 and anti-CD28 stimulation, resulted in T(reg) cell proliferation, which was interleukin-2 (IL-2) dependent. T(reg) cells that proliferated in the presence of leptin mAb had increased expression of Foxp3 and remained suppressive. The phenomena appeared secondary to leptin signaling via ObR and, importantly, leptin neutralization reversed the anergic state of the T(reg) cells, as indicated by downmodulation of the cyclin-dependent kinase inhibitor p27 (p27(kip1)) and the phosphorylation of the extracellular-related kinases 1 (ERK1) and ERK2. Together with the finding of enhanced proliferation of T(reg) cells observed in leptin- and ObR-deficient mice, these results suggest a potential for therapeutic interventions in immune and autoimmune diseases.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2016
                11 August 2016
                : 2016
                : 2526174
                Affiliations
                1Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
                2Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
                3Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai 200040, China
                Author notes

                Academic Editor: Grégory Durand

                Author information
                http://orcid.org/0000-0001-8659-4206
                http://orcid.org/0000-0002-2306-9778
                http://orcid.org/0000-0001-8360-7729
                Article
                10.1155/2016/2526174
                4997077
                27597882
                9598ea2f-8f75-4eb0-ba7e-a2dc51280946
                Copyright © 2016 Ji Yang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 March 2016
                : 15 May 2016
                : 23 May 2016
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81472874
                Award ID: 81401346
                Award ID: 81373213
                Funded by: Science and Technology Commission of Shanghai Municipality
                Award ID: 134119a8400
                Funded by: Fudan University
                Award ID: 2015ZSYXGG13
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article