48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aldehyde Dehydrogenase 1, a Potential Marker for Cancer Stem Cells in Human Sarcoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumors contain a small population of cancer stem cells (CSC) proposed to be responsible for tumor maintenance and relapse. Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate CSCs in different cancer types. This study used the Aldefluor® assay and fluorescence-activated cell sorting (FACS) analysis to isolate ALDH1 high cells from five human sarcoma cell lines and one primary chordoma cell line. ALDH1 high cells range from 0.3% (MUG-Chor1) to 4.1% (SW-1353) of gated cells. Immunohistochemical staining, analysis of the clone formation efficiency, and xCELLigence microelectronic sensor technology revealed that ALDH1 high cells from all sarcoma cell lines have an increased proliferation rate compared to ALDH1 low cells. By investigating of important regulators of stem cell biology, real-time RT-PCR data showed an increased expression of c-Myc, β-catenin, and SOX-2 in the ALDH1 high population and a significant higher level of ABCG2. Statistical analysis of data demonstrated that ALDH1 high cells of SW-982 and SW-1353 showed higher resistance to commonly used chemotherapeutic agents like doxorubicin, epirubicin, and cisplatin than ALDH1 low cells. This study demonstrates that in different sarcoma cell lines, high ALDH1 activity can be used to identify a subpopulation of cells characterized by a significantly higher proliferation rate, increased colony forming, increased expression of ABC transporter genes and stemness markers compared to control cells. In addition, enhanced drug resistance was demonstrated.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of pancreatic cancer stem cells.

          Emerging evidence has suggested that the capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Although data have been provided to support this theory in human blood, brain, and breast cancers, the identity of pancreatic cancer stem cells has not been determined. Using a xenograft model in which primary human pancreatic adenocarcinomas were grown in immunocompromised mice, we identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA). Pancreatic cancer cells with the CD44(+)CD24(+)ESA(+) phenotype (0.2-0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic potential compared with nontumorigenic cancer cells, with 50% of animals injected with as few as 100 CD44(+)CD24(+)ESA(+) cells forming tumors that were histologically indistinguishable from the human tumors from which they originated. The enhanced ability of CD44(+)CD24(+)ESA(+) pancreatic cancer cells to form tumors was confirmed in an orthotopic pancreatic tail injection model. The CD44(+)CD24(+)ESA(+) pancreatic cancer cells showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of cells initiating human melanomas.

            Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-renewal and solid tumor stem cells.

              Solid tumors arise in organs that contain stem cell populations. The tumors in these tissues consist of heterogeneous populations of cancer cells that differ markedly in their ability to proliferate and form new tumors. In both breast cancers and central nervous system tumors, cancer cells differ in their ability to form tumors. While the majority of the cancer cells have a limited ability to divide, a population of cancer stem cells that has the exclusive ability to extensively proliferate and form new tumors can be identified based on marker expression. Growing evidence suggests that pathways that regulate the self-renewal of normal stem cells are deregulated in cancer stem cells resulting in the continuous expansion of self-renewing cancer cells and tumor formation. This suggests that agents that target the defective self-renewal pathways in cancer cells might lead to improved outcomes in the treatment of these diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                23 August 2012
                : 7
                : 8
                : e43664
                Affiliations
                [1 ]Department of Orthopaedic Surgery, Medical University of Graz, Graz, Austria
                [2 ]Center for Medical Research, Medical University of Graz, Graz, Austria
                [3 ]Institute of Pathology, Medical University of Graz, Graz, Austria
                [4 ]Department of Orthopaedic Surgery, Medical University of Vienna, Vienna, Austria
                University of Navarra, Spain
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BL BR SMW. Performed the experiments: BL BR NS MA. Analyzed the data: BL BR. Contributed reagents/materials/analysis tools: BLA AL RW. Wrote the paper: BL.

                Article
                PONE-D-12-11334
                10.1371/journal.pone.0043664
                3426519
                22928012
                95990c69-4a02-44ba-9bf4-d07bf2e25d5e
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 April 2012
                : 23 July 2012
                Page count
                Pages: 10
                Funding
                Financial support by the Medical University of Graz (START grant), OENB grant (#14356) and “EccoCell” grant is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Cell Physiology
                Molecular Cell Biology
                Cellular Types
                Connective Tissue Cells
                Mesodermal Cells
                Cytometry
                Flow Cytometry
                Nucleic Acids
                RNA
                Cell Growth
                Membranes and Sorting
                Medicine
                Oncology
                Basic Cancer Research
                Tumor Physiology
                Cancers and Neoplasms
                Bone and Soft Tissue Sarcomas

                Uncategorized
                Uncategorized

                Comments

                Comment on this article